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The dynamics of a cavitation bubble was analyzed using a modified Rayleigh equation 

[Nigmatulin et al, 2000] for the slow (i.e., low Mach number) phase of the bubble growth and collapse 
transient, and a one-dimensional hydrodynamic shock (i.e., HYDRO) code was developed and used for 
the very rapid implosion phase (during which sonoluminescence and thermonuclear fusion may occur).  
The analytical model used in the HYDRO code was based on numerically evaluating the phasic 
conservation equations, and accounting for the interacting shock waves that may be formed within 
each phase.   
 

For laser driven inertial confinement fusion, separate ion and electron temperatures are required to 
characterize the plasma during implosions. In contrast, in our case, the dissociation and ionization 
processes take place due to gas compression in the imploding bubble. During the ionization process the 
velocities of the ions and electrons are of the same order of magnitude, but the mass of the ions is 
much larger than that of the electrons. As a consequence, the main part of the thermal (i.e., internal) 
energy is associated with the ions. Moreover, bubble collapse lasts such a short time that the electrons 
are not able to absorb much thermal energy from the ions. Thus, the internal energy of the plasma in 
the bubble is almost equal the kinetic energy of ions, thus a single effective temperature should 
adequately characterizes the gas plasma. Clearly this is a simplification but it was deemed adequate to 
predict bubble implosion phenomena.  

 
The one-dimensional phasic conservation equations in spherical coordinates are: 

 
Gas Mass Conservation Equation 
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Gas Momentum Conservation Equation 
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Gas Energy Conservation Equation 
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Liquid Mass Conservation Equation 
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Liquid Momentum Conservation Equation 
 

  ( ) .01 22
2 =

∂
∂

+ρ
∂
∂

+
∂
ρ∂

r
p

ru
rrt

u !
!!

!!                                  (5) 

 
Liquid Energy Conservation Equation 
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In order to evaluate these conservation equations, we need equations of state, p= p(ρ,T) and ε= ε(ρ,T), 
which are valid over a wide range of pressures and temperatures. 

 
EQUATIONS OF STATE 

 
The Mie-Gruneisen equation of state for a highly compressed fluid is [Zeldovich & Raizer, 1966]: 

 
( ) ,22

Tpue ε+ε=−ρ=ε   p = pp + pT,     ( ) ( )TTcTcTp VTVT ,,, ρ=ερΓρ=                                   (7) 
 
where εp and pp are the potential, or �cold�, components and εT and pT are the thermal, or �hot� 
components of the internal energy and pressure, respectively, Γ is the Gruneisen coefficient, and Vc  is 
an average heat capacity at constant volume. 
 
 The potential, or �cold�, components characterize intermolecular force interactions, which 
depend on the average distances between the molecules that depend on the density, ρ. For rarefied 
gases, where these distances are very large (i.e., for small densities, ρ), the potential components are 
negligibly small.  In contrast, the potential components (εp and pp) are essential for dense gases (i.e., at 
high pressure) and for condensed (liquid and solid) states of matter.  The thermal, or �hot�, 
components (εT and pT) characterize the internal energy and pressure due to thermal (chaotic) motion 
of the molecules.  For many fluids, including acetone, the Gruneisen coefficient, Γ, depends only on 
density, ρ, i.e. Γ = Γ(ρ).   
 
 The potential components can be represented by a Born-Mayer potential [Nigmatulin, 1991]: 
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where, A, K, b, and n are constant coefficients, which completely specify the Born-Mayer potential, 
and ∆εp is the correction for potential energy. 
 
To simulate thermal conductivity in an ionized gas, the thermal conductivity, kg, was given by: 
 
                                                                                                                                (9) g

m
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where a1g= 3.73 E-03, a2g= -5.34 E-02, and m= 0.5.  This model is expected to give a reasonable 
estimate of the molecular and electron conductivity of the gas and the associated heat loss.  

 
We note that the different phases (e.g., liquid and vapor) can take place only for subcritical 

conditions. That is, for, p < pcr  , T<Tcr. 
 
In our case (the supercompression of a vapor bubble in a liquid of the same substance), a 

difference between the liquid and vapor occurs when: 
 
(1) The vapor density is smaller than the liquid density and pressures are low, in which case the 

potential corrections for the vapor state may not be important. 
 
(2)  The vapor in the bubble may have a much higher temperature than the liquid outside of the 

bubble.  For instance, the maximum temperature of the liquid at the bubble interface may be 
of order of 103 � 104 K, while at the same time, the maximum temperature of the vapor (i.e., 
the fluid which was a vapor when its pressure and its temperature were subcritical) near the 
center of the bubble may be predicted to the order of 106 K. That is why the analytical 
formulas for the thermal components of the same substance in the bubble (�vapor�) and 
outside of the bubble (�liquid�) can be different when the vapor is at a much higher 
temperature. For the above mentioned conditions we need to take into account the 
dissociation of the molecules and the ionization of the atoms in the vapor. This is done 
implicitly in the Equations of State.  

  
For deuterated acetone (i.e., D-acetone: C3D6O) in the nondissociated state, the values of the 

parameters used in Eqs. (7) and (8) are: 
 
A = 0.111784 × 109 Pa,   K = 0.4935 × 109 Pa, b = 16.541,  ρo = 858 kg/m3,  

0.064 / ,M kg m= ol KkgJcv −= /2000 .  

n = 1,    ∆pp =1.8195 × 1015
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and the Gruneisen coefficient is given by: 
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As can be seen in Figure-1, nondissociated deuterated acetone has a relatively steep shock 

adiabat, which is valid during rapid transients. That is, it was assumed that the process of dissociation 
for acetone does not occur during the very short collapse time associated with an implosion (i.e., the 
fluid molecules stay in their original nondissociated state).  
 

A correction for the internal energy of vapor D-acetone must be used for  ρ<ρcrit and T < Tcrit: 
 

          (12) )(TTTTvap
ε∆+ε=ε

where, 





 <ρ<ρ−×

=ε∆ critTTcritforsmT
otherwiseTT

;,1000100.5
,0.0)(

225

     (13) 

 
To model the fully dissociated state of D-acetone the parameters in the equations of state (i.e., 

Eqs. (7) and (8) ) were again employed with the following parameters: 
 
A = 0.3666 × 109 Pa,   K = 0.68 × 109 Pa, b = 14.215,  ρo = 858 kg/m3,  
n = 1/3, KkgJcv −= /2000 ,     Γ=0.66, 

∆pp =0.6065 × 1015
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Figure-1 shows that the D-acetone equations of state agree with the available data [Trunin et al, 

1992]. As noted before, due to the speed of the implosion process the frozen shock adiabat (i.e., the 
nondissociated EOS) for the liquid phase should be used.  
 

It should also be noted that during the low Mach number stage of bubble dynamics the perfect 
gas law may be used for the vapor: 
 

  pg = ρgRgTg,  εg = Vc Tg ,    and,    
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At very high temperatures, where dissociation (D) and ionization (I) take place we used: 
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where the subscript �D� stands for dissociated fluid and �I� corresponds to ionized fluids, and for 
acetone: 
 

TD ≈ 3,000 K 
TI  ≈ 120,000 K 
ΓD ≈  0.66 

cVD ≈ 2,000 J/kg-K 
cVI ≈ 8,000 J/kg-K 
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and [Moss et al., 1994], / , 2 /D D I IR T M R T Mε ε∗ ∗= = . 
 
These equations were evaluated numerically using the following initial and boundary conditions for 
acoustically-driven bubble dynamics [Nigmatulin et al, 2000]: 
 

Initial Conditions 
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Boundary Conditions 
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where  is the location of the bubble interface. a(t)r =

 6 
 



The Hertz-Knudsen-Langmuir model for phase change [Schrage, 1953] is: 
 

 
( )














−

π
α

=′′
=

=

=

=

arg

arg

ar

arsat

g T

χp

T

Tp
R2

m
!

!       (21) 

where, 
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The incident pressure in the far field, pI, is given by [Nigmatulin et al, 2000]: 
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and the phase change coefficient, α, is related to the so-called accommodation coefficient [Kucherov et 
al., 1960], f, by:  
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NUMERICAL EVALUATIONS 
 
 The basic computation strategy was to use the modified Rayleigh equation given in Eq. (24) 
during that part of the bubble dynamics process in which the interfacial Mach number (Mag ≡| |/Ca" g) is 
such that Mag < 0.2. At higher Mach numbers we switched over to the full HYDRO code simulation 
during the bubble implosion process.  This approach was found to save a significant amount of 
computer time without sacrificing accuracy [Bae, 1999]. 
 

The slow (i.e., subsonic) portion of the bubble dynamics process was evaluated using a second 
order implicit scheme in time and space, the Dormann-Prince method [Hairer et al, 1987], which was 
applied to the model given in Eq. (24).  Homobaric solutions of this type have been discussed at length 
by Nigmatulin et al [2000].  As noted previously, when the interfacial Mach number reached           
Mag = 0.2, the modified Rayleigh equation results were used to initialize the HYRDO code.  The 
HYDRO code is comprised of the system of partial differential equations given in Eqs. (1) � (6), and, 
the equations of state and initial/boundary conditions given in Eqs. (7) � (23).   

 
These partial differential equations were evaluated using a time splitting procedure and a first 

order Godunov scheme [Godunov et al, 1976] in mixed Eulerian-Langrangian coordinates.  In 
addition, the set of equations was divided into two separate systems: the hydrodynamic system of 
equations (without considering heat transfer) was solved first, and then heat transfer was accounted for 
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during the second step.  The solution of the hydrodynamic system of equations (i.e., the Euler 
equations), was based on a local Riemann problem for the coupled computational cells and the heat 
loss was implemented using a second order spatial approximation. 

 
The ratio of the cell sizes in the gas and in the liquid at the bubble interface was chosen to 

satisfy: TvTvrr αα≈∆∆ !! , where αT = k/cpρ for the liquid and vapor, respectively. The 
computational grid consisted of 500 equal sized cells inside the bubble and 1000 in the liquid zones, 
which were disposed geometrically according to the cell size ratio given above.  To calculate the final 
stage of vapor bubble collapse more precisely, when the shock wave was focusing near the center of 
the bubble, we interpolated the results onto a 2000 × 2000 grid.  

 Figure-2 (the low Mach number stage) and Fig 3 (the high Mach number stage) show typical 
D-acetone results for two different forcing pressures. These incident pressures are composed of the 
acoustic forcing pressure the superimposed pressure due the shock waves caused by the bubbles in the 
cluster which collapse first [Tomita and Shima, 1990], the amplification of the compression waves due 
to the radial inertia induced by the oscillating bubbles [Nigmatulin, 1991], and/or the intensification of 
the shocks due to a nonuniform distribution of void fraction within the cluster [Akhatov et al, 1986].  
As can be seen, increasing the magnitude of the net forcing pressure (i.e., from 100 bar to 200 bar)  
causes the peak gas/plasma temperature to increase about 21%. Due to the sensitivity of the weighted 
nuclear cross sections [Bosch and Hale, 1992] to temperature, this has a relatively strong effect on D-D 
neutron production [ Nigmatulin et al , 2002]. 

Figure-4 shows typical predicted spatial distributions of pressure and temperature at several times (i.e., 
just before and after the shock wave reflects off itself at the center of the bubble).  Interestingly, it was 
found that there is a rather small region near, but not at, the center of the imploding bubble where the 
potential for thermonuclear fusion neutron production is a maximum [Nigmatulin et al, 2002]. 

 In accordance with the ORNL experimental results [Taleyarkhan et al, 2002], parametric runs 
showed peak gas temperatures that increased as the liquid pool temperature decreased and the phase 
change coefficient (α) increased.  These observations indicate that a good fluid for bubble fusion is one 
that has a large value of α and can be run at high forcing pressures ∆p (i.e., high liquid superheats) and 
at low liquid pool temperatures, T0.  D-acetone is such a fluid while heavy water (D2O) is not.  That is, 
acetone has a phase change coefficient (α) near unity [Paul, 1962], can be run at low liquid pool 
temperatures and experiments show that acetone can experience relatively large negative acoustic 
pressure amplitudes without giving rise to cavitation. In contrast, heavy water can not easily be put in 
tension without cavitation, will freeze as liquid pool temperature is reduced, and has a phase change 
coefficient, α, which is relatively low (α 0.075). Thus for heavy water a significant amount of vapor 
remains in the bubble during the implosion process, cushioning the collapse and mitigating the 
compression. Indeed, our HYDRO code computations show that for D

≅

20 the peak gas temperatures are 
many times lower than for D-acetone.   

 
 Finally, to obtain an estimate of the D-D fusion neutron production rate, we may use the 
neutron kinetics equation of Gross [1984]: 
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where, 
 

  concentration of entity-j (i.e., j =D, ions/mjn′′′= 3; j =n, neutrons/m3) 

 ( )vσ =  weighted cross sections [Bosch and Hale, 1992] 

 
 
The neutron production per implosion may be determined from: 
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This integral may be estimated by using the Mean Value Theorem, yielding: 
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where  is the radius of the supercompressed/superheated central core region of the bubble,  is the 
reaction, time, and, depending on the modeling assumptions made, the range of the characteristic 
values are [Nigmatulin et. al, 2002], [Lahey et. al, 2002]: 
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Thus a reasonable estimate for the neutron production rate is: 
 

  neutrons/implosion. 
2 1

10 to 10nn
−

≈
 
Since we expect about 1000 bubbles in the bubble clusters formed in the ORNL experiments, and each 

bubble cluster experienced up to 50 implosions/sec, having nn =10  neutrons/implosion, implies: 
2
to 10

−

  
 (1,000)(10nn =" -2 to 10) (50) = 103 to 106 neutrons/sec, 
 
which is in good agreement with what was measured in the ORNL experiments, [Taleyarkhan et. al, 2002]. 
 
It should be stressed that many modeling assumptions were necessarily made in the HYDRO code, 
such as: the equations of state, the use of an effective temperature to approximate the behavior of the 
electrons and ions in the plasma, the relevant energy losses, and the various mechanisms for shock 
wave intensification.  There is no doubt that more realistic plasma physics, nuclear physics and 
thermal-hydraulic models can, and should, be developed for future applications (e.g., sonochemistry or 
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bubble fusion reactor design studies).  Nevertheless, the predicted trends, and basic physical 
phenomena that have been modeled, agree with our experimental observations and are expected to be 
remain valid.   
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Vapor Bubble Collapse in Deuterated Acetone, C3D6O 
(High Mach Number Stage)

Temperature and density evolution of acetone near the center of the bubble (at r= r*).
f = 20 kHz,   T0 = 273 K,   α = 1.0.
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