Washington, DC 20375-5000

NRL Memorandum Report 6617

Nuclear Fusion in a Solid via a Bose Bloch Condensate

T.A. CHUBB AND S.R. CHUBB*

Bendix Field Engineering Corporation Oxon Hill, MD 20745

*Space Sensing Branch and Space Applications Branch Space Systems Technology Department

March 5, 1990

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PASE

.

.

.

.

A REPORT SECURITY CLASSIFICATION	<u> </u>			_	REPORT DOCU	MENTATION	PAGE			
22 SECURITY CLASSIFICATION AUTHORITY 1 DISTRIBUTION / AVAILABILITY OF REPORT 25 DECLASSIFICATION / DOWNGADANG SCHEDULE Approved for public release; distribution unlimited. 26 DECLASSIFICATION / AVAILABILITY OF REPORT NUMBER(S) S. MONITORING ORGANIZATION INFORM ORGANIZATION NRL MEITO REPORT MUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) S. ANGE OF FROMMING ORGANIZATION So OFHEE SYMBOL (# applicable) 3310 Ze ADDRESS (Gry, State, and ZIP Code) 7a. NAME OF MONIGORG ORGANIZATION Naval Research Laboratory So OFHEE SYMBOL (# applicable) 3310 Ze ADDRESS (Gry, State, and ZIP Code) 9. PROCUREMENT INSTRUMENT INSTRUMENT INSTRUMENT INSTRUMENT INSTRUMENT INSTRUMENT INSTRUMENT INSTRUMERT Nocker FUNDING (SPONSONNO Ba: OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT INSTRUMEN	1a. REPORT SECURITY CLASSIFICATION					TO. RESTRICTIVE MARKINGS				
2b. DECLASSFICATION /DOWINGRADING SCHEDULE Approved for public release; distribution unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(3) 5. MONITORING ORGANIZATION REPORT NUMBER(3) 5. NRL Memo Report 6617 5. MONITORING ORGANIZATION REPORT NUMBER(3) 5. NAME OF PERFORMING ORGANIZATION (b) OFFICE SYMBOL (ff applicable) B310 5. MONITORING ORGANIZATION REPORT NUMBER(3) 5. MAME OF PERFORMING ORGANIZATION (ff applicable) B310 15. NAME OF MONITORING ORGANIZATION (ff applicable) B310 70. ADDRESS (CMp. State. and 21P Code) 5. ADDRESS (CMp. State. and 21P Code) 70. ADDRESS (CMp. State. and 21P Code) 70. ADDRESS (CMp. State. and 21P Code) 5. ADDRESS (CMp. State. and 21P Code) 70. ADDRESS (CMp. State. and 21P Code) 70. ADDRESS (CMp. State. and 21P Code) 6. ADDRESS (CMp. State. and 21P Code) 70. ADDRESS (CMp. State. and 21P Code) 70. ACCESSION NO. 7. TITLE (Indude Security Classification) 8300 10. SOURCE OF FUNDING NUMBERS PEOGRAM FROJECT FASX ACCESSION NO. 11. SUBCE T TERMS (Continue on reverse if necessary and identify by block number) 7. COSATI CODES 118. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. 7. COSATI CODES 118. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15. <tr< td=""><td>2a. SECURITY</td><td>CLASSIFICATI</td><td>ON AUT</td><td>HORITY</td><td></td><td colspan="5">3. DISTRIBUTION / AVAILABILITY OF REPORT</td></tr<>	2a. SECURITY	CLASSIFICATI	ON AUT	HORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT				
4 PERCOMING ORGANIZATION REPORT NUMBERS: 5. MONITORING ORGANIZATION REPORT NUMBERS: NRL MEND REPORT OLABORAMULATION EDD ORGANIZATION 6b OFFICE SYMBOL (# oppicable) 7a. NAME OF PERFORMING ORGANIZATION (# oppicable) Xxv31 Research Laboratory 8b OFFICE SYMBOL (# oppicable) 7b. ADDRESS (CHY, State, and ZIP Code) Xxv31 Research Laboratory 8b. OFFICE SYMBOL (# oppicable) 7b. ADDRESS (CHY, State, and ZIP Code) Xxv31 Research Laboratory 80. OFFICE SYMBOL (# oppicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Xxv31 Research Laboratory 80. OFFICE SYMBOL (# oppicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Xxv31 Research Laboratory 80. OFFICE SYMBOL (# oppicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Xxv31 Research Laboratory 80. OFFICE SYMBOL (# oppicable) 10. SUBJECT TASK (# oppicable) NUMERER Xxv31 Research Laboratory 80. OFFICE SYMBOL (# oppicable) 10. SUBJECT TASK (# oppicable) NUMERER Xxv31 Research Laboratory 80. OFFICE SYMBOL (# oppicable) 10. SUBJECT TASK (# oppicable) NUMERER Xxv31 Research Laboratory 10. SUBJECT TASK (# oppicable) 10. SUBJECT TASK (# oppicable) NUMERER Xxv31 Research Laboratory 10. SUBJECT TERMS (Continue on reverse if mecsary and identify by block number) 15. PAGE COUNT (#	2b. DECLASSI	26. DECLASSIFICATION / DOWNGRADING SCHEDULE					Approved for public release; distribution unlimited.			
NRL Memo Report 6617 Image: Second Seco	4. PERFORMI	NG ORGANIZA	TION RE	PORT NUMBE	R(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)				
Sa. NAME OF PERFORMING ORGANIZATION Bb. OFFICE SYMBOL (If applicable) Ta. NAME OF MONITORING ORGANIZATION Naval Research Laboratory Bb. OFFICE SYMBOL (B310 Ta. NAME OF MONITORING ORGANIZATION Sc. ADDRESS (CHY, State, and ZHP Code) Tb. ADDRESS (CHY, State, and ZHP Code) Naval Research Laboratory Bb. OFFICE SYMBOL (H' applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERS Naval Research Laboratory Bb. OFFICE SYMBOL (H' applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERS Naval Research Laboratory Bb. OFFICE SYMBOL (H' applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERS Naval Research Laboratory Bb. OFFICE SYMBOL (H' applicable) 10. SOURCE OF FUNDING NUMBERS Naval Research Laboratory Bb. OFFICE SYMBOL (H' applicable) 10. SOURCE OF FUNDING NUMBERS Washington, DC 20375-5000 ID. SOURCE OF FUNDING NUMBERS Woork UNIT Nuclear Fusion in a Solid via a Bose Bloch Condensate 1 1 1 PROG ARTINON IB. TIME (OVERED FINAL IB. TIME (CONTING ON RESEARCH NO. No. 2 PROSONAL AUTHORIS IB. TIME (CONTING ON RESEARCH NO. 15 3 ABSTRACT (CODES IB. SUBISCT TERMS (Continue on reverse if mecessary and identify by block number) 15 7 COSATI CODES	NRL Mei	no Report 6	617							
Ex ADDRESS (Gry, State, and ZIP Code) 7b. ADDRESS (Gry, State, and ZIP Code) Nashington, DC 20375-5000 7b. ADDRESS (Gry, State, and ZIP Code) Naval Research Laboratory 8b. OFFICE SYMBOL (If applicable) 8300 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERS Naval Research Laboratory 8300 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERS Washington, DC 20375-5000 10. SOURCE OF FUNDING NUMBERS WOOK UNIT Nuclear Fusion in a Solid via a Bose Bloch Condensate PROGRAM NO. NO. 2 SERSONAL AUTHORIS 13b. TIME COVERED TROM 4/209 TO 11/89 14. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT 1. TITLE (Include Security Classification) 13b. TIME COVERED TROM 4/209 TO 11/89 14. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT 1. TOTE (Genome on reverse if necessary and identify by block number) 15 Condensed matter fusion 15 3 ABSTRACT (Continue on reverse if necessary and identify by block number) Condensed within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTINUTION/AVAILABULTY OF ABSTRACT 10. DICULASSIFICINUME MARK SCOUPLING Area Code) 120 Code STMBOL 0. DISTINUTION/AVAILABULTY OF ABS	6a. NAME OF Naval Re	6a. NAME OF PERFORMING ORGANIZATION Naval Research Laboratory			6b. OFFICE SYMBOL (If applicable) 8310	7a. NAME OF MONITORING ORGANIZATION				
Nashington, DC 20375-5000 a. AAME OF FUNDING/SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (# applicable) B300 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM Naval Research Laboratory B300 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM Naval Research Laboratory B300 10. SOURCE OF FUNDING NUMBERS Naval Research Laboratory PROGRAM PROGRAM Nashington, DC 20375-5000 PROGRAM PROGRAM I. TITLE (Include Security Classification) Nuclear Fusion in a Solid via a Bose Bloch Condensate J. PERSONAL AUTHOR(I) Tabler A. Chubb, Scott R. and Chubb, Talbor A. PROGRAM J. TITLE of REPORT Tabler COVERED 14 DATE OF REPORT (Year. Month. Day) PROSCURENTARY NOTATION 13b. TIME COVERED 14 DATE OF REPORT (Year. Month. Day) 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 8. ABSTRACT (Continue on reverse if necessary and identify by block number) 0. OSTINUUTION/AVALABULTY OF ABSTRACT 8. ADDRESC T a theory of solid state fusion based on the formation of a D' 0. State of nuclear dimensions. Reaction rates for the coalescence reaction which converts a 4-fold occupation state of state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule.	6c. ADDRESS	(City, State, ar	d ZIP C	ode)		7b. ADDRESS (City, State, and ZIP Code)				
a MAKE OF FUNDING OF SONSORING ORGANIZATOM (b): OFFICE SYMBOL (f) applicable 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROJECT Naval Research Laboratory (b): OFFICE SYMBOL (f) applicable 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROJECT Naval Research Laboratory (b): OFFICE SYMBOL (f) applicable 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROJECT Naval Research Laboratory (f): OFFICE SYMBOL (f): applicable 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROJECT Naval Research Laboratory (f): OFFICE SYMBOL (f): applicable 10. SOURCE OF FUNDING NUMBERS PROGRAM Washington, DC 20375-5000 (f): SOURCE OF FUNDING NUMBERS PROGRAM (f): OFFICE SYMBOL No. (f): OFFICE SYMBOL No. 1. TITLE (Include Security Classification) (f): OFFICE SYMBOL Nuclear Fusion in a Solid via a Bose Bloch Condensate (f): OFFICE SYMBOL No. (f): OFFICE SYMBOL No. 1. TITLE (Include Security Classification) (f): OFFICE SYMBOL Nuclear Fusion (f): OFFICE SYMBOL No. (f): OFFICE SYMBOL No. (f): OFFICE SYMBOL No. 7. COSATI CODES (f): SUBJECT TERMS (Continue on reverse if necessary and identify by block number) (f): SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7. COSATI CODES (f): SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7. C	Washingt	on, DC 203	375-5	000						
ADDRESS (CR), Sale, and ZP Code) 10. SOURCE OF FUNDING NUMBERS Washington, DC 20375-5000 PROGRAM, PROJECT TASK, MORE UNIT, ACCESSION NO. 1. TITLE (include Security Classification) Nuclear Fusion in a Solid via a Bose Bloch Condensate 1. TITLE (include Security Classification) Nuclear Fusion in a Solid via a Bose Bloch Condensate 1. TITLE (include Security Classification) Nuclear Fusion in a Solid via a Bose Bloch Condensate 1. PROST Task Important Provided P	6a. NAME OF ORGANIZA Naval Re	FUNDING/SPO	onsorin	ig arv	8b. OFFICE SYMBOL (If applicable) 8300	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
Washington, DC 20375-5000 PROGRAM PROGRAM PROJECT TASK WORK UKUT 1. TITLE (Include Security Classification) Nuclear Fusion in a Solid via a Bose Bloch Condensate 1 PROGRAM No. ACCESSION NO. 1. TITLE (Include Security Classification) Nuclear Fusion in a Solid via a Bose Bloch Condensate 1 PROGRAM No. No. ACCESSION NO. 1. TITLE (Include Security Classification) Nuclear Fusion in a Solid via a Bose Bloch Condensate 1 PROGRAM No. No. ACCESSION NO. 1. TITLE (Include Security Classification) Total Condensate 1 Solid Via a Bose Bloch Condensate 1 2. PERSONAL AUTHORS: That Covered Total Via a Bose Bloch Condensate 1 Solid Via a Bose Bloch Condensate 15 5. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15 15 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 15 15 8 ABSTRACT (Continue on reverse if necessary and identify by block number) Condensed matter fusion 16 17 9 ABSTRACT Security Continue on reverse if necessary and identify by block number) Contensed in a test of nuclear dimensions. Reactio	Sc. ADDRESS	City, State, and	d ZIP Co	de)						
1. TITLE (Include Security Classification) Nuclear Fusion in a Solid via a Bose Bloch Condensate 1. PERSONAL AUTHOR(S) Chubb, Scott R. and Chubb, Talbot A. 2. PERSONAL AUTHOR(S) Chubb, Scott R. and Chubb, Talbot A. 2. PROM 4/89 to 11/89 13b. TIME COVERED FROM 4/89 to 11/89 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 7. COSATI CODES 19. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Condensed matter fusion 3. ADSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTRIBUTION/AVAILABULITY OF ABSTRACT QUNCLASSIFIED/JAVAILABULITY OF ABSTRACT QUNCLASSIFIED/JAVAILABULITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/JAVAILABULITY OF ABSTRACT CONSTRIBUTION/AVAILABULITY OF ABSTRACT QUNCLASSIFIED/JAVAILABULITY OF ABSTRACT 21. AMANG OF REPON	Washingto	on, DC 20:	375-50	000		PROGRAM PROJECT TASK WORK ELEMENT NO. NO. ACCESS		WORK UNIT ACCESSION NO.		
Nuclear Fusion in a Solid via a Bose Bloch Condensate 1 PERSONAL AUTHOR(S) Chubb, Scott R. and Chubb, Talbot A. 1a, TYPE OF REPORT 11b. TIME COVERED FROM 4/89 to 11/89 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 15 6. SUPPLEMENTARY NOTATION 110. TIME COVERED FROM 4/89 to 11/89 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 15 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7. COSATI CODES 19. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 9. ABSTRACT (Continue on reverse if necessary and identify by block number) Condensed matter fusion 9. ABSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTRIBUTION/AVALABILITY OF ABSTRACT DITC USERS 21. ABSTRACT SECURITY CLASSIFICATION 0. DISTRIBUTION/AVALABILITY OF ABSTRACT DITC USERS 21. ABSTRACT SECURITY CLASSIFICATION	11. TITLE (Inc	ude Security (lassifica	tion)		[<u> </u>	}		
2. PERSONAL AUTHOR(S) Chubb, Scott R. and Chubb, Talbot A. 3. YPE OF REPORT 13b. TIME COVERED FINAL 0. DISTRIBUTION/AVAILABILITY OF ABSTRACT G. DISTRIBUTION/AVAI	Nuclear Fu	sion in a So	lid via	a Bose Bloc	ch Condensate					
34. TYPE OF REPORT 13b. TIME COVERED FROM 4/89 to 11/89 14. DATE OF REPORT (Year. Month. Day) 15. PAGE COUNT 15 FIRED FROM 4/89 to 11/89 1990 March 5 15 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP condensed matter fusion 9. ABSTRACT (Continue on reverse if necessary and identify by block number) condensed matter fusion 9. ABSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTRIBUTION/AVAILABILITY OF ABSTRACT DTIC USERS 21. NAME OF RESPONSIBLE INDIVIDUAL 220. TILEPHONE (Golden Aree Code) 220. TOL 7-3233 23. MANE OF RESPONSIBLE INDIVIDUAL 220. TOL 7-3233 21. Corrigide Aree Code) 220. TOL-3233 21.0 FRIED	12 PERSONAL Chubb, Sci	AUTHOR(S) ott R. and C	hubb,	Talbot A.						
6. SUPPLEMENTARY NOTATION 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) condensed matter fusion 9. ABSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTRIBUTION/AVALABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION CUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 24. MAME OF RESONSIBLE INDIVIDUAL 220. TELEPHONE (Include Area Code) 220. OFFICE SYMBOL 20. DISTRIBUTION/AVALABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 24. MAME OF RESONSIBLE INDIVIDUAL 220. TELEPHONE (Include Area Code) 220. OFFICE SYMBOL 20. DISTRIBUTION/AVALABILITY OF ABSTRACT 220. TELEPHONE (Include Area Code) 220. OFFICE SYMBOL 25. TELEPHONE (Include Area Code) 220. OFFICE SYMBOL 2312.5	13a, TYPE OF FINAL	REPORT		13b. TIME CO	OVERED 89 TO 11/89	14. DATE OF REPO	RT (Year, Month, i	Day) 15. P	AGE COUNT	
7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP condensed matter fusion 9. ABSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 9. DISTRIBUTION/AVALABILITY OF ABSTRACT [11. ABSTRACT SECURITY CLASSIFICATION] QUNCLASSIFIED/UNLIMITED SAME AS RPT. [DDTC USERS] 21. NAME OF RESPONSIBLE INDIVIDUAL [220, 707-3233] [220, OFFICE SYMBOL] 20050000000000000000000000000000000000	16. SUPPLEME	NTARY NOTA	TION			1750 Million 5			<u></u>	
7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 9. ABSTRACT (Continue on reverse if necessary and identify by block number) Condensed matter fusion 9. ABSTRACT (Continue on reverse if necessary and identify by block number) Condensed matter fusion 9. ABSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 24. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22. TELEPHONE (Include Area Code) 22: OFFICE SYMBOL COLT R. Chubb 23. NELEPHONE (Include Area Code) 22: OFFICE SYMBOL COLD 22: 70/-32:3 8312: 5										
Pieto GROUP SUB-GROUP condensed matter fusion 9. ABSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION QUNCLASSIFIED/UNUMITED SAME AS RPT. DTIC USERS 22. MAME OF RESPONSIBLE INDIVIDUAL 22.5 TELEPHONE (Include Area Code) 22.6 OFFICE SYMBOL 20.015 R. Bubb 21.015 TELEPHONE (Include Area Code) 22.6 OFFICE SYMBOL 20.015 R. Chubb 22.017 07-3233 8312.5	17.	COSATI	CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)					
3. ABSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTRIBUTION/AVAILABILITY OF ABSTRACT QUNCLASSIFIED/UNLIMITED GAME AS RPT. DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED GAME AS RPT. DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22. NAME OF REPONSIBLE INDIVIDUAL COLUMN CLASSIFIED 23. NAME OF REPONSIBLE INDIVIDUAL COLUMN CLASSIFIED 24. NAME OF REPONSIBLE INDIVIDUAL COLUMN CLASSIFIED 24. NAME OF REPONSIBLE INDIVIDUAL COLUMN CLASSIFIED 24. NAME OF REPONSIBLE INDIVIDUAL COLUMN CLASSIFIED 25. NAME OF REPONSIBLE INDIVIDUAL COLUMN CLASSIFIED 26. NAME OF REPONSIBLE INDIVIDUAL COLUMN CLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22. DEFICE SYMBOL <p< td=""><td>FIELD</td><td>GROUP</td><td>SUE</td><td>-GROUP</td><td>condensed matt</td><td>er fusion</td><td></td><td></td><td></td></p<>	FIELD	GROUP	SUE	-GROUP	condensed matt	er fusion				
9. ABSTRACT (Continue on reverse if necessary and identify by block number) We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule. 0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION QUNCLASSIFICONINUMITED SAME AS RPT. DTIC USERS 24. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHENNE (Include Area Code) 22c. OFFICE SYMBOL 2021 / 70/-3233 2325. TELEPHENNE (Include Area Code) 22c. OFFICE SYMBOL					·					
We present a theory of solid state fusion based on the formation of a D ⁺ bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule.	19. ABSTRACT	(Continue on	reverse	if necessary a	and identify by block n	umber)	····			
0. DISTRIBUTION/AVAILABILITY OF ABSTRACT QUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 24. NAME OF RESPONSIBLE INDIVIDUAL 25. NAME OF RESPONSIBLE INDIVIDUAL 25. NAME OF RESPONSIBLE INDIVIDUAL 25. TELEPHONE (Include Area Code) 22. DEFICE SYMBOL 23. NAME OF RESPONSIBLE INDIVIDUAL 25. TELEPHONE (Include Area Code) 22. DEFICE SYMBOL 23. NAME OF RESPONSIBLE INDIVIDUAL 25. TELEPHONE (Include Area Code) 25. DEFICE SYMBOL 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFICATION 21. ABSTRACT SECURITY CLASSIFICATION 21. ABSTRACT SECURITY CLASSIFICATION 21. ABSTRACT SECURITY CLASSIFICATION 21. ABSTRACT SECURITY CLASSIFICATION 21. ABSTRACT SECURITY CLASSIFICATION 22. DEFICE SYMBOL 23. NAME OF RESPONSIBLE INDIVIDUAL 23. NAME OF RESPONSIBLE INDIVIDUAL 23. NAME OF RESPONSIBLE INDIVIDUAL 24. NAME OF RESPONSIBLE INDIVIDUAL 25. DEFICE SYMBOL	We present a theory of solid state fusion based on the formation of a D^{\dagger} bosonic Bloch condensate within a metal deuteride. The first step towards fusion is a coalescence reaction which converts a 4-fold occupation state of zero point motion size into a state of nuclear dimensions. Reaction rates for the coalescence reaction are calculated using the Fermi Golden Rule.									
0. DISTRIBUTION/AVAILABILITY OF ABSTRACT QUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 24. NAME OF RESPONSIBLE INDIVIDUAL 25. TELEPHONE (Include Area Code) 22c, OFFICE SYMBOL 22b, TELEPHONE (Include Area Code) 8312.5										
0. DISTRIBUTION/AVAILABILITY OF ABSTRACT QUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 24. NAME OF RESPONSIBLE INDIVIDUAL 25. DTIC USERS 22. DTIC USERS 23. DTIC USERS 23. DTIC USERS 24. DTIC USERS 25. DTIC USERS									ļ	
0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION QUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS UNCLASSIFIED 2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL Cott R. Chubb 23 ADD. Chubb 23 ADD. Chubb 23 ADD. Chubb									\$	
0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION QUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS UNCLASSIFIED 24. NAME OF RESPONSIBLE INDIVIDUAL DTIC USERS UNCLASSIFIED 220. TELEPHONE (Include Area Code) 220. OFFICE SYMBOL 20. TELEPHONE (Include Area Code) 220. OFFICE SYMBOL 220. TELEPHONE (Include Area Code) 220. OFFICE SYMBOL 20. TELEPHONE (Include Area Code) 220. TELEPHONE (Include Area Code) 220. TELEPHONE (Include Area Code) 220. TELEPHONE (Include Area Code) 20. TELEPHONE (Include Area Code) 220. TELEPHONE (Include Area Code) 220. TELEPHONE (Include Area Code)	54 p.//									
22. NAME OF RESPONSIBLE INDIVIDUAL Scott R. Chubb 22. TELEPHONE (Include Area Code) 22. OFFICE SYMBOL (202) 707-3233 8312.5	20. DISTRIBUT	ION/AVAILABI	μτγ ορ εσ 🖸	ABSTRACT		21. ABSTRACT SEC	URITY CLASSIFICA	TION		
	22a. NAME OF Scott R.	RESPONSIBLE	INDIVIC	UAL		225 TELEPHONE (0	clude Ares Code)	22c, OFFIC	E SYMBOL	
LA EVIDINE LAST BEARK OUTING THAT DE DESCRIPTION	DD FORM 14	73. RA MAA		R7 400	edition may be used	levhausted		1 0012.0		

	-						
\er	editions	are	0250	le	te	1.	

.

CONTENTS

.

.

.

,

.

.

Introduction	1
The bosonic Bloch condensate	1
Palladium hydride and conditions favoring D ⁺ BBC formation	1
D ⁺ BBC fusion reactions	2
BBC formation using bosons which interact only with the lattice	3
Nuclear reactions	5
Electrostatic self-interaction (the coulomb barrier)	8
D ⁺ BBC Interactions in PdD	10
References	11

NUCLEAR FUSION IN A SOLID VIA A BOSE BLOCH CONDENSATE

Introduction

This paper discusses a concept of solid state fusion based on the formation of a D^+ boson Bloch condensate $(BBC)^1$ within a palladium deuteride host lattice. Evidence for such solid state fusion has been presented by Fleischmann and Pons², who have described episodic generation of anomalous heat in Pd cathodes following extended overvoltage electrolysis of LiOD solutions. Other evidence for solid state nuclear interactions in PdD_x includes the observations of surface hydrogen isotopic anomalies in Pd cathodes subsequent to such electrolysis^{3,4} and the possible observation of a small number of 20+ Mev energy release events in a Si charged-particle detector adjacent to a Pd electrode charged with D⁺ ions by ion implantation⁵.

The bosonic Bloch condensate

The D⁺ BBC is a collective bosonic condensate derived from weakly bound D⁺ ions which are well-screened but constrained to an approximately periodic arrangement through electrostatic interaction with a host lattice. The resulting Bloch symmetry permits the condensate to exist at low boson concentration c =N_B/N_L, where N_B is the number of condensate bosons and N_L is the number of unit cells in the host crystal. The BBC is a collective, cooperative entity which contributes fractional charge per unit cell. It undergoes integer occupation fluctuations at individual sites, expressed by Wannier functions.

Palladium hydride and conditions favoring D⁺ BBC formation

The PdH_x and PdD_x systems have been studied extensively⁵. PdD_x differs from PdH_x by having a lower equilibrium pressure at any given x. Both materials are superconducting at low temperature with PdD_x having a higher transition temperature. This higher transition temperature, and the higher diffusivity of D as opposed to H in Pd are contrary to expectations based on increased mass. Absorption of D into PdD_x expands the lattice and causes local strain when x is small. This strain energy is

Manuscript approved January 22, 1990.

a component of the chemical potential, which is very positive at low x, becoming very negative as x + 1. As x + 1, D additions remove local strain due to isolated vacancies. This x-behavior of the chemical potential suggests that values of x very near x=1 should be favorable for formation of a D⁺ BBC. Very near x=1, the limited availability of vacancies dictates that some unit cells will contain more that 1 D⁺ ion. Without formation of a D⁺ BBC, these sites must be doubly occupied, creating high local lattice strain, hence a high positive chemical potential. When a D⁺ BBC forms, the excess D⁺ charge is shared by all periodically equivalent sites in the crystal, avoiding local lattice strain. Hence the D⁺ BBC should be thermodynamically favored.

D⁺ BBC fusion reactions

Nuclear reactions from a D⁺ BBC state in a crystal lattice are possible because, from such initial state, an the electrostatic barrier problem of free space nuclear interaction may be eliminated. Fusion is a result of three D^{\dagger} BBC properties: screening by the lattice for c << 1, the resulting large zero point motions associated with this screening, and the multiple boson occupation of single lattice sites. (Here $BBC-D^+$ refers to the D⁺ ions that have become part of the BBC, and does not include D^{*} ions which are part of the host lattice. Henceforth D^{*} shall refer to BBC-D⁺ unless otherwise indicated.) The large zero point motion spreads out the D⁺ charge density within a unit cell. The resultant reduction in the self-interaction associated with multiple occupation virtual states increases the time constant for electrostatic interaction relative to that for nuclear interaction, leading to a separability of interaction modes, as Since each D⁺ BBC ion "sees" an discussed further below. approximately periodic potential, the single particle density at a given site is derived from a superposition of different Bloch symmetric eigenstates. The associated density at a given site can be viewed as either a superposition of non-stationary, Wannier state densities, each of which is localized primarily

around an individual site, or as a superposition of time independent Bloch state densities, each of which extends throughout the lattice. In the evaluation of the transition matrix element associated with fusion, the initial state wave functions and fusion-inducing changes in the potential result from non-number conserving, many-body fluctuations associated with multiple occupation of Wannier states at a given site. Site multiple occupation causes deuteron wave functions to overlap, inducing fusion.

BBC formation using bosons which interact only with the lattice

We first consider a BBC formed from mutually-non-interacting bosons. These bosons interact only with a host metal lattice and its itinerant electron population. Boson-boson interactions are ignored.

We consider the case of the N_B bosons distributed within a crystal containing N_L host unit cells. It is assumed that the bosons reside in potential wells within the unit cell of the host metal. Fractional charge is allowed at each site so that the potential provided by the lattice is periodic over a large enough scale that Bloch functions apply. The single particle wave functions $\psi_{Bloch}(\mathbf{k}, \mathbf{r})$ for the ideal lattice have the property

$$\psi_{\text{Bloch}}(\mathbf{k},\mathbf{r}+\mathbf{R}) = \psi_{\text{Bloch}}(\mathbf{k},\mathbf{r}) \exp(\mathbf{i}\mathbf{k}\cdot\mathbf{R}) \qquad (1)$$

The fluctuation properties are shown by expanding in terms of Wannier functions

$$\psi_{\text{Bloch}}(\mathbf{k},\mathbf{r}) \exp(-\epsilon(\mathbf{k})t/\dot{\mathbf{h}}) = (1/N_L)^{1/2} \sum_{s=1}^{N_L} \phi_s(\mathbf{r},t) \exp(i\mathbf{k}\cdot\mathbf{R}_s) , \quad (2)$$

where R and R_s are Bravais lattice vectors, $\epsilon(\mathbf{k})$ is the band energy of ψ_{Bloch} , and k is the crystal momentum. Each ϕ_s is a Wannier state, which, in the harmonic approximation, is suitably approximated at t=0 by the ground state wave function of a

parabolic well,

$$\phi_{s}(\mathbf{r}) = (2/\pi a^{2})^{3/4} \exp(-\mathbf{r}_{s}^{2}/a^{2})$$
, (3)

where $r_s = r-R_s$, and a is the classical turning point of the well. The many body wave function associated with the occupation

of N_B band states (denoted by eigenvalues ϵ_p) possessing N_B coordinate dependencies **r** is given by

$$\Psi(\epsilon_{p}, \mathbf{r}) = (1/N_{B}!)^{1/2} \sum_{\substack{i \mid \psi \\ \{\mathbf{r}_{m}\}}} \frac{N_{B}}{m=1} , \qquad (4)$$

where the sum over $\{\mathbf{r}_m\}$ includes interchange of each coordinate \mathbf{r}_m with the remaining N_B-1 coordinates, ensuring that Ψ is suitably Bose symmetric. Substituting Eq. 2 into Eq. 4, we find that

$$\Psi(\epsilon_{p}, \mathbf{r}) = (1/N_{\rm B}!)^{1/2} \sum_{\{\mathbf{r}_{\rm m}\}} (1/N_{\rm L}) \left\{ \begin{array}{c} N_{\rm B} & N_{\rm L} \\ \langle 1 \rangle & \sum \phi_{\rm s}(\mathbf{r}_{\rm m}) \\ m=1s=1 \end{array} \right\} \exp(ik_{\rm p} \cdot \mathbf{R}_{\rm s}) \left\} . \quad (5)$$

In the bracketed product of summed terms in Eq. 5 there exist subsets of terms containing multiple values of m contributing to fixed site s Wannier functions $\phi_s(\mathbf{r}_m)$. All terms for which n values of m contribute to any of the $\phi_s(\mathbf{r}_m)$ correspond to n-fold occupation of the lattice site s. For large N_B, small c, and small occupation number n there exist $(N_L)^{NB} c^n/n!$ terms corresponding to n-fold occupations by distinguishable bosons. For indistinguishable bosons, these terms become n!-degenerate due to the equivalence of n! permutations of the coordinate dependencies in each of these terms. Thus there are $(N_L)^{NB} c^n$ terms corresponding to n-fold occupations by indistinguishable bosons. For notational purposes, we regroup terms in Eq. 5 that

correspond to different n-fold occupations. The corresponding collection of terms we designate as $\phi(n, k_p, r)$. Thus

$$\Psi(\epsilon_{p}, \mathbf{r}) = \sum_{n=1}^{N_{B}} \phi(n, \mathbf{k}_{p}, \mathbf{r})$$

In the next section we will be concerned with 4-fold occupations, which we call quad-bosons.

Nuclear reactions

We now consider the properties of D⁺ BBC bosons and the resulting nuclear interactions that are implied by self-interaction. As discussed in the next section, the magnitude of the electrostatic self-interaction V^{elec} is reduced dramatically within a solid. As a consequence, nuclear self-interaction provides the dominant, non-number conserving form of interaction at one or a set of lattice sites. A further consequence of the reduction of V^{elec} involves an uncoupling of the motion of the center of mass (\mathbf{r}_{cm}) from variations in the proton-neutron separation (\mathbf{r}_{n-p}) in each single particle D⁺ wave function ψ_{deut} through the separability condition,

 $\psi_{\text{deut}} = \psi_{\text{elec}}(\mathbf{r}_{\text{cm}}) \qquad \psi_{\text{nuc}}(\mathbf{r}_{\text{n-p}})$

Here, $\psi_{\text{elec}}(\mathbf{r}_{cm})$ varies on the length scale of the electrostatic interaction, while the spatial variation of $\psi_{\text{nuc}}(\mathbf{r}_{n-p})$ occurs over the range of the strong interaction. The initial state D^{\dagger} BBC component becomes occupied when sufficient numbers of D^{\dagger} ions become indistinguishable on the length scale of the electrostatic interaction and the associated single particle wave functions $\psi_{\text{elec}}(\mathbf{r}_{cm})$ approach the single particle ψ_{Bloch} states of Eq. 2. Eq. 5, then, may be used to describe the many-body electrostatic wave function for the D^{\dagger} BBC initial state, with the understanding that each Wannier state $\phi_s(\mathbf{r}_m)$ is multiplied by a site independent nuclear wave function ψ_{nuc} , which depends only on the value of \mathbf{r}_{n-p} and not on the location within the lattice of the deuteron. Bounds on the probability of nuclear self-interaction then can be obtained from the absolute square of the integral of the multiply occupied initial state product, $\phi_s(\mathbf{r}_1) \dots \phi_s(\mathbf{r}_n)$, multiplied by a more compactly distributed product of final state wave functions in which all of the final electrostatic boson functions fall within the nuclear force range \mathbf{r}_{nuc} . From the "bosons in and bosons out" selection rule of ref. 1, we are led to explore a reaction in which four initial state Wannier functions coalesce over a volume $V_{nuc} = 4/3 \pi r_{nuc}^3$, forming an eight fermion "nuclear bag" state analogous to a free space excited ⁸Be^{*} nucleus. Symbolically we will refer to this coalescence reaction as

 $\phi(4, \mathbf{k}_{p}, \mathbf{r}) + \theta(4, \mathbf{k}_{p}, \mathbf{r}_{nuc})_{Bloch} , \qquad (6)$

where $\theta(4, k_p, r_{nuc})$ represents the "nuclear bag-like" configuration. This reaction is the first step in the fusion reaction

$$4D^{+}_{Bloch} \Rightarrow ^{8}Be^{*}_{Bloch} \Rightarrow 2^{4}He$$
 . (7)

We calculate the reaction rate from the Fermi Golden Rule',

$$\dot{n} = 2\pi/\dot{h} \Sigma \langle i|V|f \rangle \langle f|V|i \rangle \delta(E_{f}-E_{f})$$
(8)

where $|i\rangle$ denotes this inital D⁺ BBC state. The sum is over final states $|f\rangle$, where

$$\{f\} = (1/N_{B}!)^{1/2} \sum_{\substack{k \in \mathbb{Z}}} | (1/N_{L}) \sum_{\substack{k \in \mathbb{Z}}} \phi_{s}(\mathbf{r}_{m}) \exp(i\mathbf{k}_{p}\cdot\mathbf{R}_{s}) \bullet \\ \{r_{m}\} m=5 \qquad s=1 \\ \phi_{d}(\mathbf{r}_{1})\phi_{d}(\mathbf{r}_{2})\phi_{d}(\mathbf{r}_{3})\phi_{d}(\mathbf{r}_{4})$$

$$(9)$$

where ϕ_d is a compact "defect" function, centered at the single site $\mathbf{r}_{\text{fusion}}$ where fusion takes place and has spatial variation in its center of mass coordinate only over the range \mathbf{r}_{nuc} . Also $\dot{h} = h/(2\pi)$, where h is the Planck constant, and $\delta(\mathbf{E}_i - \mathbf{E}_f)$ is the δ -

function in which E_i is the initial total energy and E_f is the final energy. The δ -function guarantees conservation of energy between initial and final states. The operator V refers to the nuclear self-interaction potential.

To establish a lower bound on the required BBC concentration associated with the observed heating², we treat the square well self-interaction nuclear potential case, in which an isolated square well is defined by an upward shift in kinetic energy T_o of each D^{\dagger} ion over the characteristic nuclear dimension r_{nuc} near r_{fusion} . The volume of the well is derived from $r_{nuc} = 9.1 \times 10^{-13}$ cm, appropriate for a mass 8 nucleus. This is equivalent to immediate dissipation of α -particle product energy in the reversed reaction within the region where interaction takes place. Consistent with these approximations we replace the eight body nucleon problem associated with the four defect functions with a single body problem in which the four initial and final state electrostatic functions are replaced by a single initial and final state wave packet, whose characteristic size is determined by the characteristic length scale of the center of mass motion of initial and final states. This is equivalent to transfering all nuclear energy directly into alpha particle motion and treating all nucleons with an independent nucleon Also, consistent with this choice of model, the final model. density of states $\rho(E) = dn/dE$ is

 $\rho_{\rm f}(0) = 1/(\dot{\rm h}\omega_{\rm nuc})$

where $\omega_{nuc} = (3\dot{h}/2) / (m_B R_{nuc}^2)$, m_B is the deuteron mass, and E = -0 is the energy level of the BBC deuteron band in the lattice. We choose vanishing values for all wave-vectors k_p in Eq. 5 since the case of an isolated perturbation applies to low temperature. For initial and final states, we use wave packet forms

 $\psi_{\text{packet},i} = (2/(\pi a^2))^{3/4} \exp(-r^2/a^2)$

$$\psi_{\text{packet,f}} = (3/(2\pi R_{\text{nuc}}^2))^{3/4} \exp(-3r^2/4R_{\text{nuc}}^2)$$

where r is measured from the center of boson mass in each unit cell and $R_{nuc} = (3/4\pi V_{nuc})^{1/3}$. The overlap integral O(J) is

$$O(J) = (16/3)^{3/4} (V_{\text{puc}}/V_{\text{har}})^{1/2}$$

and

$$\dot{n} = (16/3)^{3/2} 2\pi V_o^2/\dot{h} 2m_B R_{nuc}^2/(3\dot{h}^2) V_{nuc}/V_{har} c^4 .$$
 (10)

In the calculation O(J) receives contributions from each unit cell in the crystal. Using the heat release associated with reaction (7) for the magnitude of the perturbation $V_a = 47.6$ MeV, we obtain a lower bound for $c = 2.8 \times 10^{-7}$ for a volumetric power density output $\hbar V_o/V_{site} = 10$ W/cm³, as observed in ref (2). (V_{site} is the unit cell volume of Pd.)

Electrostatic self-interaction (the coulomb barrier)

Inclusion of the D^+-D^+ electrostatic interaction affects the BBC by introducing a many-body interaction that could affect the band picture from which the BBC is derived. The band picture remains valid provided that each D^{\dagger} (within or outside the BBC) remains well-screened. However, a breakdown of the application of the band picture for describing nuclear behavior occurs when the timescale τ^{elec} associated with electrostatic self-interaction for multiply occupied Wannier states becomes comparable to the timescale associated with nuclear self-interaction τ^{nuc} . The difference between τ^{elec} and τ^{nuc} (= the inverse of the nuclear reaction rate) determines whether or not the electrostatic and nuclear interactions are separable, and thereby determines the appropriateness of the form assumed for each mutually-noninteracting boson wave function in the nuclear reaction calculation, described in the last section.

Each n-fold occupation component of the BBC is a single entity whose particle character is evident only through the existence of virtual states as described by the Wannier functions. The virtual states describe a transient occupation of a unit cell by an integer number of deuterons. The lifetime of the n-fold multiple occupation virtual state is determined by the self-interaction energy ΔE_n , except for the single occupation state. Since the BBC is in thermodynamic equilibrium with non-BBC deuterium in the lattice, ΔE_1 must be small, otherwise BBC states would not be occupied. ΔE_2 is the difference in self interaction between single and double occupation of a unit cell, and can be evaluated using the Wannier state wave functions defined by Eq. 3:

$$\Delta E_2 = 3/2 e^2 \int \frac{|\phi_s(\mathbf{r})|^2 |\phi_s(\mathbf{r'})|^2}{|\mathbf{r} - \mathbf{r'}|} d^3\mathbf{r} d^3\mathbf{r'} \qquad . (11)$$

Using a = 0.5 Bohr, we find $\Delta E_2 = 81.6$ eV. Similarly $\Delta E_4 = 408$ eV. The corresponding Planck lifetimes $\tau^{\text{elec}}_n = h/\Delta E_n$ are $\tau^{\text{elec}}_2 =$ 5.1 x 10⁻¹⁷ s and $\tau^{\text{elec}} = 1.0 \times 10^{-17}$ s. These electrostatically determined lifetimes compare with the Planck time $\tau^{nuc}_{\mu} = h/V_{\alpha}$ ~ 10⁻²² s, associated with self-induced nuclear interaction that results from quadruple occupation (as modeled by four distinguishable single particle deuteron wave functions which coalesce within a common nuclear volume). The large difference in electrostatic and nuclear lifetimes justifies the Born-Oppenheimer separable form for ψ_{deut} used in the last section, which leads to an uncoupling of the nuclear and electrostatic degrees of freedom. The reduction in charge density caused by D⁺ harmonic motion inside the unit cell thus reduces $\Delta E_{electrostetic}$ by five orders of magnitude from its free space value, which is comparable to ΔE_{nuc} . If it were not for the dominance of lattice interaction, the free space interaction energy would apply, Born-Oppenheimer separability would not apply, and fusion would be prevented.

D⁺ BBC Interactions in PdD

The last section describes a D^+ BBC volumetric nuclear selfinteraction that is calculable using the Bloch eigenstates of the system and that approximately conserves crystal momentum. The reactions do not refer to any particular value of x. However, the most favorable condition for D^+ BBC formation is $x \rightarrow 1$. Under these conditions interaction of the BBC with non-BBC D^+ may be possible. The applicable reactions would be

$$3D_{Bloch}^{\dagger} \leftrightarrow {}^{6}Li_{Bloch}^{\dagger}$$
 (12a)

 ${}^{6}\text{Li}^{*}_{\text{virtual}} + {}^{2}\text{D}^{+} \rightarrow {}^{6}\text{Be}^{*} \rightarrow 2 \text{ alpha}$. (12b)

The maximum rate for this reaction chain would have the same form as that of Eq. 7, but with a c^3 concentration dependence instead of a c^4 dependence, namely

$$\hbar = (16/3)^{3/2} 2\pi V_o^2/\hbar 2m_B R_{muc}^2/(3\hbar^2) V_{muc}/V_{har} c^3$$
. (13)

An alternate mode of energy release might be by successive nuclear interaction scattering reactions with non-BBC D^{\dagger} . These reactions could be of the form

$$2D^{+}_{Bloch} + He^{*}_{Bloch}$$
 (14a)

 ${}^{4}\text{He}^{*}_{\text{virtual}} + \text{D} \rightarrow {}^{4}\text{He}^{**} + \text{D}_{\text{scat}}$ (14b)

$${}^{4}\text{He}^{**} + D \rightarrow {}^{4}\text{He}^{***} + D_{\text{scat}}$$
 (14c)

$${}^{4}\text{He}^{**..*} + D \rightarrow {}^{4}\text{He} + D_{\text{scat}}$$
 , (14d)

where 4He^{**} and 4He^{****} are nuclear bag states of lower total energy than the D⁺ BBC and the D_{scat} are recoil scattered non-BBC deuterons. Once reaction (14b) occurs, reaction (14a) becomes energetically blocked. Reactions (14) may be the most favorable mode of decay. Coupling between the chemically bonded D and the lattice could result in momentum transfer to the lattice as a whole. The result could be heat release without any high energy particle generation.

(a) Permanent address: Bendix Field Engineering Corp., Oxon Hill,MD 20745

References

r

\$

¹ S. R. Chubb and T. A. Chubb, submitted to Nature , (1989).

² M. Fleischmann and S. Pons , J. Electroanal. Chem. <u>261</u>, 301 (1989).

³ E. Storms in <u>Proceedings NSF/EPRI Workshop on Anomalous</u> <u>Effects in Deuterated Metals</u>. in press.

* K. Wolf, ibid.

⁵ G. P. Chambers, J. E. Eridon, K, S. Grabowski, B. D. Sartwell, and D. B. Chrisey, <u>Journal of Fusion Energy: Proceedings of the</u> <u>Utah Conference on Cold Fusion</u> (May 23-25, 1989), in press.

⁶ E. Wicke and H. Brodowsky in <u>Hydrogen in Metals II</u>, edited by G. Alefield and J. Volkl (Springer, Berlin, 1978), p. 73.

⁷ E. Merzbacher, <u>Quantum Mechanics</u>, 470 (John Wiley & Sons, New York, 1964).