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ABSTRACT

A new model is proposed to treat configuration mixing between bound and continuum neutron

states in a lattice; the Hamiltonian for this model is of the form of the Anderson Hamiltonian. In

condensed matter physics, the Anderson model describes (among numerous other effects) electron

hopping in semiconductors; the neutron model presented here predicts neutron hopping in lattices

containing a mixture of isotopes. This result is new.

The Anderson model treats the mixing between localized states embedded in a continuum. In

the neutron model, the localized states are energetically far removed from the continuum; conse­

quently, the neutron model treats a much simpler mathematical problem.

Brillouin·Wigner theory is applied to a restricted Fock space version of the model containing

states with 0 and 1 neutrons free. This leads to perturbative results that describe the effects of

continuum neutron mixing to lowest order. The resonant scattering of virtual neutrons is predicted

to lead to neutron de!ocalization, as long as the interaction perturbs either the linear momentum

or total angular momentum of the nucleons.

Delocalized neutrons can be captured, with the reaction energy going into gammas and other

incoherent decay products; such reactions are predicted by this model. Delocalized neutrons can

be captured accompanied by energy exchange with the lattice. Formulas describing this type of

reaction are derived. and the resulting rates estimated.

1. Introduction

During the last several years, there have been numerous reports of the observation of excess heat

in electrochemical experiments following the initial announcement by Pons and Fleischmann of the
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effect in 1989.1- 4 The magnitude of the claimed effect rs very large, with net energy production in

some experiments reported to be in excess of 100 eV per atom of cathode material. This level of

excess energy cannot be of chemical origin; if it is correct, then it must be due to a nuclear process.

These experiments have proven to be difficult to verify, and there is doubt on the part of

most members of the scientific community as to whether there even exists an effect. Theoretical

arguments given early on as to what the origin of the effect might be were easily dismissed. The

seeming absence of any compelling theoretical reason as to why there should be any effect at a.ll,

together with the rather poor signal to noise ratio of the initial experimental data, combined with

the seeming irreproducibility of the effect, has led to the general rejection of the effect outright

by the scientific community. Noted skeptics are now quick to bring up the topic of UFOs when

discussing research on the Pons-Fleischmann effect.

The question of whether or not there is an effect is ultimately an experimental one; clearly the

work reported here was motivated towards seeking theoretical explanations of the effect under the

assumption that an effect exists. Hopefully, the experimental issues will be settled soon, although

it is clear that the work is hard and progress has been slow.

When the effect was first reported, there were speculations as to possible origins of the effect.

Most speculations centered around the possibility that dd-fusion was somehow responsible for the

heat. The fusion of deuterons in quantities commensurate with the claimed heat production would

lead to large tritium production and lethal neutron generation rates; neither is observed in the

experiments. Even now, the majority of theorists who continue to work in this area are focusing

their attentions on fusion mechanisms, for explaining heat or other effects.S- 7 Some popular current

proposed explanations postulate that a new fusion channel exists that leads to 4He production, with

the energy excess going into the lattice.

We have focused instead on novel reaction mechanisms involving the proposed exchange of

neutrons between distant nuclei in a lattice.8 - 10 The basic proposed effect is a neutron analog of

electron hopping in semiconductors, with energy exchange with the lattice taking place through the

frequency shifting of highly excited phonon modes: this mechanism will be discussed in the present

work, and discussion of lattice energy transfer appears elsewhere. 8- 1l

There are two principal difficulties in the proposal of neutron transfer reactions as a candidate

reactions to account for heat production. The neutron transfer was proposed to take place through

virtual neutron states, and it is well known that the range of virtual neutrons near an isolated

nucleus is measured in fermis rather than Angstroms; this is the first difficulty. Yirtual neutrons

must somehow be delocalized before any reactions can take piace. Last year we noted that de­

localization can be induced through scattering, we evaluated delocalization effects due to Bragg

scattering: we also proposed that resonant scattering of virtuai neutrons might lead to observable
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effects. We proposed last year10 that the resonant scattering be mediated through electromagnetic

interactions; these are found to be too weak, and here we propose that resonant scattering mediated

by strong force interactions is a far more likely route.

The second fundamental difficulty with heat generation through neutron transfer reactions is

the problem of coupling nuclear energy with the lattice. It can be shown that direct recoil effects

are not capable of mediating the requisite large energy transfer without the presence of fast (MeV)

nuclei. We instead proposed that very large energy transfer can be mediated through changes in

the basic structure of the phonon modes.a,9,11 In a sense, energy transfer through the creation

or destruction of phonons doesn't work; energy transfer through the modification of pre-existing

phonons does work, at least theoretically.

There exists no currently generally accepted experimental evidence supporting the proposal

that neutron hopping can occur in a lattice. We wiU argue here that neutron hopping is somewhat

analogous to electron hopping, and argue further that the Anderson modeP2 used for electron band

mixing calculations can, with modifications, be used for neutron problems.1J This statement is in

fact the primary result reported in this work. A key feature of the Anderson model is the presence

of localized states that are embedded in a continuum of free states; the neutron localized states are

several )"leV below the continuum states, so that although mathematically similar to the Anderson

model, the neutron model is very much simpler.

Having posed the model, we begin the task of analyzing the model to extract reaction rates. The

field of Anderson model studies is by now relatively mature; variational methods, perturbation the­

ory and canonical transformation approaches have proven to be very successful is analyzing solutions

for the Anderson Hamiltonian. We have attacked the problem using infinite order Brillouin-Wigner

theory, which leads directly to a perturbation expansion that is relatively easy to understand; the

evaluation of the resulting formulas is less easy. We propose here rather crude estimates of reaction

rates; this is perhaps appropriate. since this work is the first publication on the neutron lattice

Anderson model.

The formulas appear to show that neutron hopping can occur at fast rates that would not have

been anticipated if either phonon exchange or total angular momentum exchange occurs during a.

single site-to-site transfer. This is a key result of the present work.
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2. Neutron Transfer-Reactions

In previous publications, we have worked towards the development of a. theory for neutron

transfer reactions in a lattice mediated by electromagnetic El and Ml interactions.8- tO In the

present work, this theory is developed further, and extended to include effects mediated by the

strong force.

We have explored a model including the lattice, nuclei, and free neutrons. In the absence of

recoil effects, the resulting model is mathematic.ally equivalent to the periodic Anderson model in

condensed matter physics; our application of the Anderson madelto describe neutrons, rather than

electrons, is new. Electron hopping effects are well-known in condensed matter physics, and can

in certain limits be described using the periodic Anderson madel; applied to neutrons, our model

describes neutron hopping, an effect unknown prior to our studies.

The periodic Anderson model has been analyzed using a variety of techniques. It has been

solved approximately using the Schrieffer-Wolff rotationj l4-1T it can be solved exactly in certain

limits through the use of a canonical transformation. l8 In the limit that essentially no neutrons

are free, we can simplify the probfem by truncating Fock space to include only zero- and one­

neutron subspacesj the resulting equations can be solved approximately using BriUouin-Wigner

theory, which leads to estimates for free neutron densities and reaction rates.

Upon evaluating the resulting formulas, we find that no coherence factors appear. In previous

publications,1O we had speculated that coherence factors should appear by analogy with the coher­

ence factors that occur in Dicke super radiance. This speculation is found to be in error, for rather

fundamental reasons associated with the fermionic statistics associated with the neutron transfer

and bosonic statistics associated with photon emission.

Furthermore, we find that in the absence of coherence factors, the effects associated with elec­

tromagnetic El and Ml transitions are trivially small, and can not by themselves lead to any

observable new effects. The relative weakness of the electromagnetic effects comes about due to the

smallness of external electric or magnetic fields applied to the nucleus . .-\. significantly larger effect

is possible through the use of the strong force interaction, and we find that neutron hopping rales

and neutron transfer reaction rates may become important when mediated by the strong force.

There are a variety of neutron transfer reactions that are possible in this model. A bound

neutron that couples to continuum states will most often not stray more than a few fermis from

the parent nucleus: this effea appears as the lowest order effect in all solutions to the model. and

is also present in the isolated nucleus problem. The neutron will occasionally become delocalized;

in the theory, this appears as a result of the possibility of scattering of the free (virtual) neutrons.

Delocalized neutrons can -hop-from nucleus to nucleus. A large rate is estimated for the resonant
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process where a de10calized neutron hops between equivalent nuclei, such that the total isotopic

distribution is unchanged (so-called. "null" reactions); although of great theoretical interest, these

reactions are not easily observable, except possibly through isotopically-sensitive self·diffusion ex­

periments. However, delocalized neutrons that hop onto a nonequivalent nucleus can result in

gamma or alpha emission, as well as the creation of radioactive species.

If a delocalized neutron hops onto a nonequivalent nucleus, and if the lattice can provide or

accept the energy defect, then a large reaction rate is predicted. We have discussed previously the

conditions under which significant energy exchange during a neutron transfer reaction can occur

with the lattice; energy transfer can occur if a highly excited phonon mode changes frequency by

jumping across a phonon band gap. In this case, the process becomes resonant, and the associated

reaction rates are calculated to be very large. The end result of such reactions can in principle

be the generation (or absorption) of net energy, modification of pre-existing isotopic ratios, or the

production of new isotopes.

We must now consider how this theory might address some of the outstanding experimental

claims. In the case of the Pons-Fleischmann experiments, the heat-producing reaction with the

smallest energy defect is the transfer of a neutron from losPd to 6Li, with an energy mismatch of 156

KeV. The symmetry of the Pd transfer involves d-wave neutrons, which results in small interaction

matrix elements. Perhaps more promising are neutron transfers between HB (p-wave) and 29Si

(s-wave), with an energy mismatch of 849 KeV; and neutron transfers between 29Si as donor and

29Si as acceptor, with and energy mismatch of 2.14 ~'1eV. In the light water heat experiments,19-20

there occurs a relatively close match (12 KeV) for neutron transfers from 62Ni (p-wave) and 29Si

(s-wave). Tritium production in this model could come about due to neutron transfers from a

number of materials to deuterium: examples are given in Tables I and II in Section 9.

3. The Periodic Anderson Model

The proposed neutron transfer reaction in metal hydrides is in many ways analogous to the

problem of electron hopping in solids. Before discussing the neutron problem further, it seems

appropriate to first review briefly the electron version of the problem. The most relevant condensed

matter model are variants of what is termed the Anderson model. following the initial treatment

by Anderson of the sod mixing of an iron-group metal impurity in a host metal. 1'2 This Anderson

model treats the coupling between an isolated localized impurity electronic state that is embedded

in a conduction band. This model has been generalized to treat multiple impurity states in a metal,

and further generalized to apply to mixing between valence and conduction bands in a lattice. 23-'28
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as

+ ;" I: .[Ifla > e· k .l < ckal +h.c.]
vN lka

(3.3)
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+ I: Ick. > Ek < ckal
k.

if; I: Iflu, > Ef(a,) < fla,l
1,<T1

(3_2)

where the X operators are Hubbard operators; these are more complicated operators that are made

up of products of single particle creation and annihilation operators.

Sakai et alJ4 have used a model Hamiltonian to study mixed valence states of rare earth ions;

this Hamiltonian was written in the interesting form

l>kcL,ack..,+2: £>.X>..>.(i)+ l:>j.<Xj.<,,,(i)+ L W:: e-ikR, et,.,xj.<>.(i) +Vl'~: eik,R, ~Y>,j.<(i)~..,l
k," i,>' I,ll i,k,."".>.

H- " -j - "d-' d- 1U" - - "[" -ik-R; -j d- 11,' ik·R;d-' - I= L....t"kck.(l'Ck•.,+ 4--t"d i,., ;'''+2" 4--ni,.,ni,-.,+ L.... vke ck •., i,IT+ k e i,.,Ck•.,
k," ',IT I,IT i.k,.,

(3.1)

where it;,a = J1..,Ji •.,. This Hamiltonian includes individual Hamiltonians for the conduction

band Lk.., !kCt..,.,Ck.., (which are the ,s·orbitals of the .s-d model), the localized valence states

Li,., !dd!..,di,., and the valence correlation energy tu Li,IT ni,.,ni,_a· The last term on the right

hand side mixes the valence band and the conduction band. The spin dependence of Vk has been

suppressed, following a convention used in much of the literature.

Numerous variants of this model appear in the literature. In the limit that the correlation

energy U is taken to be zero, the Hamiltonian can be diagonaJized exactly. In the alloy analog

approximation,23 the correlation term is omitted, and a site-dependent valence energy is introduced.

In many cases, the correlation energy U is very large, so that only two valence configurations are

present. In this case, the problem can be restated in terms of more complicated transition operators

that prevent inclusion of unwanted configurations in the problem. For example, the degenerate

periodic Anderson model sometimes appears as29- 3J

Whereas the neutron analog of the single impurity pro&lem is simpler (since the bound state is so

far removed from the continuum states), the neutron analog of the lattice model will be of great

interest in what follows.

In the non-degenerate version of the periodic Anderson model, the Hamiltonian can be written



In this formula, Iflat > refers to an f state at lattice site I. The occurence of projection operators is

explicit in this notation. Recognizing that equations (3.2) and (3.3) describe the same basic model

perhaps helps to make clear the role of the Hubbard operators.

There are many papers that have obtained approximate solutions for these models, however, it

is generally recognized that the appearance of the more complicated transition operators greatly

complicates the algebra associated with the solutions. The slave-Boson model was developed to

address this ~ssue.3S Since the predominant effect of the correlation term is to restrict multiple

occupancy of the localized valence sites, simple fermionic creation and annihilation operators could

be employed (without the correlation term) if the creation of unwanted electrons could be restricted

by the addition of a new degree of freedom. The basic idea of the slave-Boson model is then to

treat the valence sites approximately using simple fermionic operators (which by themselves could

produce multiple occupancy) supplemented by a simple Bosonic degree of freedom that more or

less acts as a switch to turn off further electron creation once a site is singly occupied. This model

is implemented in the slave-Boson Hamiltonian

In order to enforce single occupancy at a site, the following auxiliary constraint is imposed

",,"j" "t"
L.. d;,,,d;,,, + bib; == 1

q

(3.4)

(3.5)

This version of the periodic Anderson model has proven to be rather successful. being easier to

analyze and providing answers that are close to the original modeI.18,3S-37

4. An Anderson Model for Neutrons

A lattice that contains an element that has two isotopes differing only by one mass leads to a

neutron analog of the mixed valence problem. In this case, the valence bands are composed of highly

localized bound neutron states corresponding to the different isotopes, and the conduction band is

composed of free neutrons states. The neutron valence bands will be very narrow, corresponding

perhaps more closely to the premise of the Anderson model than the electronic \'alence states in

mixed valence problems.

There will also be significant differences between the neutron and electron Anderson models. For

example. the nuclear binding energies are measured in MeV. rather than in eV. and the conduction
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orbitals are very nearly free neutron states. The Anderson model in condensed matter was developed

originally to model discrete states that are embedded in a continuum, and most modern applications

and interesting physics associated with the model arise due to this intimate coupling; in the nuclear

problem, the neutron bands will always be well-separated from the conduction band. Because of

this, the neutron version of the problem is fundamentally much simpler.

The neutron is much heavier than an electron; consequently, recoil effects will be much more

important. The motion of free electrons in a metal is reasonably benign; a single electron can

scatter, contibute to a magnetic susceptibility, and interact with phonons, none of which by itself

leads to observables that are easily discernable from the outside. A single free neutron, if captured,

will likely produce gamma radiation that can on average be observed from the outside with high

efficiency.

The electron Anderson models discussed in the last section may be adopted almost directly

for use in analyzing neutron mixing and dynamics. For example, the periodic Anderson model of

equation (3.1) will lead to

if -" .,. "d' d· +~U,,·· .. "[V, -".R;., d W ".It'd'· J- L.,,£kck.O'Ck,O' + ~(,j i,O' ',0' 2 ~ n',O'n1,_O' + L." k e ck.O' "0' + k e i,Il'Ck,O'
k,O' 1,0' ',Il' i,k,O'

(4.1)

In this model, the creation and annihilation operators now will refer to neutron orbitals, and £,j

now will be on the order of MeV. The matrix element Vk will generally also be spin-dependent,

though this dependence is suppressed in the notation. Recoil and lattice effects will be important,

and this can be included by taking the nuclear center of mass coordinates to be phonon operators

~. The neutron Anderson Hamiltonian should be augmented by a lattice Hamiltonian; this we

will attend to elsewhere. For now, we may include phonon effects approximately by including them

in matrix elements where appropriate.

The generalizations of the electronic Anderson Hamiltonian discussed in the last section also

will serve as generalizations of the neutron Anderson Hamiltonian, with modifications as discussed

above. This connection between the two problems is important because it allows, in principle, the

use of the particular methods, solutions, and physical effects known for the electronic problem to

be used for the neutron problem. For example, we may use the Schrieffer-Wolff transformation, or

the various Green's function methods, or even apply the slave-Boson model.
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(5.1)

(5.2)

5. Configuration Interaction Mixing

The interaction Hamiltonian that mixes the valence and conduction band in the case of the

electronic Anderson model is the one-electron part of the site Hamiltonian12

v,; = ~J¢;(r)HHF(r) I:e;kR.na(r -!l.,,)
vN n

where a(r - Ron) is the band Wannier function. The Hartree-Fock approximation at a site produces

solutions that are stationary against mixing with all configurations involving the promotion of only

a single electron at that site, so that there would be no mixing were it not for the fact that the

Wannier functions from neighboring sites spill over,leading to

v,; = _1_ I: e;k.R"V,(!l.,,)
.,fN R.n,.

Our attention must now turn to the interaction in the case of neutron band mixing. Since

bound neutrons are strongly localized around their parent nuclei, the associated Wannier functions

will also be localized. The mixing brought about from neighboring site overlaps is exponentially

damped; consequently, the normal one-electron Anderson interaction matrix elements vanish in the

analog neutron Anderson model.

In our previous works on the neutron transfer model, we focused on one~neutron matrix ele­

ments mediated by electromagnetic El and MI interactions.8 - 10 In this case there is no question

that an appropriate one-neutron interaction arises, and that a neutron Anderson model would

result. Unfortunately, this interaction is simply not sufficiently strong to lead to interesting conse­

quences, as will be clear shortly. In the absence of any other mixing effects, this problem would be

uninteresting.

But we have so far neglected t~"()-nudeon matrix elements in this discussion. Consider the

mixing between a ground state nuclear wavefunction ITo, (JY' > and the free state built up of the

ground state ~o of the parent nucleus and a free neutron ¢I< to give l4iot!>k, (J)'" >, with both total

states containing equivalent numbers of neutrons and protons. In a multiconfigurational Hartree­

Fock approximation, these states would mix. In a nonorthogonal Hartree-Fock approximation, the

states would be mixed directly; in the standard Hartree·Fock method, the free state would be

orthogonalized against the ground state before mixing.

Depending on the details of the calculation. mixing would occur between the states arising

from tw().nucleon interactions, although only one neutron is free in the excited state admixture.

Two-nucleon matrix elements would be expected to arise naturally due to rearrangement effects in

the parent nucieus. This mixing would normally lead to relatively minor adjustments in the ground

10-9



state energy of Icflo,(J)"" >. It could be argued that in a lattice model based on a collection of

"exact" isolated nuclear wavefunctions (using known experimental energies), that this configuration

interaction is already included in the states and their energies.

The configuration interaction energy due to configurations containing one free neutron could

be estimated by assuming a variational trial wavefunction of th~ form

'Ii = dl4>o,(J)' > +L>k.•I~o<h,(Jt >
k••

(5.3)

where d and Ck.,. are scalars. In the general problem, we would also sum over all parent nuclei, a

complication that we forgo here. The trial energy for this wavefunction is

E = {dd·d +L {kCk,.,.Ck,.,. +L:[VkCk,.,.d +Vk:aCJc,o]
k,.,. k,.,.

subject to the constraint

Idl' +L h .•I' = l'
k••

The interaction matrix element is

(5.4)

(5.5)

(5.6)

(5.7)

where V3 is the strong force interaction. In the OPEP (One Pion Exchange Model) interaction,38

V3 is

v, = L ~g' m,c'(T,. Tj) {(U" Uj) + [1 + _3_.;. _3_,] S'j} e-";'
i<i 3 hc P.rii (j.tTii) Wii

The strong force coupling constant is 92Inc = 0.081, the mass of the pion is m"" the r vectors

are isospin operators, the u vectors are nuclear spin operators. and the extinction coeficient is

p. = mt'clh = (1.4 fm)-l. The term proportional to Sii is the tensor part of the interaction.

The trial energy is easily minimized; to lowest order the energy is

(5.8)

Correlations from continuum states to total nuclear energies are generally small compared to the

neutron binding energy; for example, neutron binding energies are typically 5-W .\·leV, and the

correlation energy may be on the order of a hundred KeV or greater.
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In the Anderson model for electrons, the interaction matrix element is often taken to be constant,

and estimates for (5.8) then follow. In the nuclear problem, a similar approximation leads to a

divergence. If we assume that Vk mixes continuum s-orbitals, and if we introduce a Gaussian

cut·off at high momentum, then we may parametrize Vk through

(5.9)

V" is the nuclear volume, V is the lattice volume, and ko is a cut-off momentum. The correlation

energy t!J.Ec becomes

(5.10)

Using p(k) = (2k/.)'V, we obtain

(5.1l)

where

(5.12)

The integral can be estimated

(5.13)

leading to

o.E - __2_v. k'IVoI' 0' (5.14)
C - ,,(3/2 n 0 ICdl 1+a +a2/2

The various constants that appear in (5.14) are together of order unity, and the reduced interaction

strength is on the order of an MeV

(5.15)

The free neutron in this case is localized. Whereas each individual free neutron oroital goes like

e
ik

.
r
, the coefficients ck./7 are slowly varying with k. The free neutron wavefunction in this case

can be constructed from the mixing coefficients
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(5.16)tPu(r) f'V L Ck,ueik.r --+ Ce-a1rl

k

It is the destructive interference between the waves that leads to the short range of the virtual

neutron.

Configuration mixing in the case of a lattice will generally be similar, except that since the

continuum orbitals extend over the lattice, each nucleus mixes with a common set of orbitals.

Before doing any computations, we would immediately expect that the energy of the N neutrons

that are being mixed should be on the general order of

(5.17)

with lattice effects contributing terms at higher order.

If we assume that at each occupied site we have a contribution from a ground state nuclear

wavefunction d;l~o(i),(J)"" >, and the continuum orbitals are filled with probability ck.u, the we

might expect the total energy to be

subject to the constraint

L Id;l' +L l'k,.I' = N
k ••

(5.18)

(5.19)

It is not hard to show that the optimization of this energy leads to equation (5.17) to lowest order.

In the optimization, we find that

(5.20)

This has an interesting interpretation; suppose that the phases of all of the ground state nuclei were

the same (dj ~ 1), then only the neutron states with wavevectors matching the reciprocal lattice

vectors contribute. In retrospect this is obvious, since the localized free neutron contribution around

each wavefunction would be in phase, and these could only be made up of continuum waves that

are matched with the lattice.

From the discussion above. it is clear that states comaining free neutron orbitals wiiI mix with

nuclear ground states, that the free neutron contribution is localized to lowest order. and that

this mixing in the lattice does involve many localized nuclei mixing with a common continuum.

10-12



Consequently, the lattice Anderson model is appropriate to describe this mlxmg. The energy

formulas above are similar in form to some of the terms appearing in the Anderson Hamiltonian

(the U-correlation terms are absent due to the choice of the variational wavefunctions), and this is

not an accident.

From the arguments given above, it is clear that the energy eigenvalues of the neutron lattice

Anderson Hamiltonian should be renormalized to remove the equivalent one-free-neutron isolated

nucleus correlation energy. Our focus will be on that part of the free neutron wavefunction that is

delocalized, which has no analog in the isolated nucleus problem.

6. One-Neutron Approximation

Our immediate goal is the computation of reaction rates for neutron transfer reactions. If we

had solutions to the Anderson model, then we could in principle use these solutions to obtain

estimates of the reaction rates. We wiU argue below that if interactions with the phonons are

neglected in the neutron Anderson model described in the last two sections, which corresponds

to the situation most often treated in the literature, then no reactions occur to lowest order. IT

phonon interactions are included, then reactions become allowed. We are not aware of any solutions

to the Anderson model that include the full recoil interaction, although recent works have appeared

that include phonon interactions to lowest order.42 - 44 If the neutron Anderson model is further

modified to include a more complicated group structure, then reactions also become allowed due

to the exchange of angular momentum, even jf no phonon exchange occurs. We introduce the

one-neutron approximation and Brillouin-Wigner theory below to address the general problem of

estimating reaction rates.

The coupling between the neutron valence band and conduction band is sufficiently weak that

to lowest order all neutrons are tightly bound, assuming that no free neutrons have been injected

into the lattice. To first order, perhaps there may be a few free neutrons present; we propose to

use this to our advantage by considering only excited states containing only a single free neutron.

The advantage of this approach is that the structure of the resulting Hamiltonian is much simpler,

and this allows us to apply perturbation theory algebraically. The important results in this section

are formal; the perturbation theory is used to begin a discussion of reaction rates in the following

section.

We may implement this approximation by restricting Fock space to include O-neutron and 1­

neutron subspaces only. In this case, the projected Anderson Hamiltonian takes the form
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- [if,H=
o (6.1)

where Ho operates on the O-neutron states, and so forth.

The time-independent Schrodinger equation may be solved formally using infinite order Brillouin­

Wigner theory (this is closely related to the approach of Ref. 39); we assume a solution of the form

(6.2)

where cPo is an exact solution of the O-neutron problem

The projection operator Qis given by

Q = 1-I~, >< ~,I

It can be shown that the energy E can be written as

The equation for Qllfo is

(6.3)

(6.4)

(6.5)

(6.6)

Since (Ho - E)~o::;: (Eo - E}~o = -lflo < 4lo1VIll'1 >, this form of solution leads to two coupled

time-independent Schrodinger equations

(6.5)

(6.6)

The two equations can be combined to yield an equation for the I-neutron wavefunction

(6.7)

This result is interesting because it contains explicitly the scattering potential of the free neutrons.

A recursive formula is obtained for the energy E
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E =< ~oIHol~o > +< ~olV IE - HI - VI(E _ Ho)-IQV] -, VII~o > (6.8)

We consider first the problem of configura.tion interaction of an isolated nucleus; in dus case

there is no resonant scattering of the free neutrons, and we may solve for 1J't

(6.9)

The denominator is the difference of the bound state energy and the free neutron energy, which

will be several MeV; '1'1 will consequently be quite insensitive to the mixing since E - Eo will be

small. This leads to an energy E equal to

which is to lowest order

E=.,- L IV.I'
}cpt'k- Ed

in agreement with the results of section 5.

Neglecting free neutron scattering in the case of the lattice case leads again to

which evaluates to lowest order to

(6.10)

(6.11)

(6.12)

E = N [., - L IV.I' ] (6.13)
• Ek - Ed

"
Fortunately, the infinite-order Brillouin-Wigner solution leads naturally to a convenient approxi-

mation scheme that has a rather clear interpretation.

We are now in a position to examine the effects of resonant scattering using perturbation theory.

To second order, we obtain for 11f t

(6,14)

The first term is local; we seek neutron delocalization in the second order correction. Two of the

denominators involve (E - Hl ), which evaluates to the binding plus free energy, which is on the

order of several MeV_ The other denominator invoh-es (E - Ho), and is resonant.

If the lattice is composed of nuclei with only a single isotope present. then this term does very

little; in this case, a neutron that originates from site i must land on site i. which (in the absence
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of phonon generation) would give back the ground state (which is excluded by the Q operator. Far

more interesting is the mixed valence problem where the lattice is composed of near equal amounts

of the ground state llf>o,(J)'" > nuclei and the parent llf>o,(J')"" > nuclei. With the addition of

many equivalent parent nuclei, there are now a very large number of resonant sites where the free

neutron can scatter. A neutron originating from site i now can "hop" to the many possible sites i,
in each case with a resonant denomina.tor (E - fio) occuring.

Under the assumption that the scattering involves free neutron states of low energy, the off­

resonant denominators are well-approximated by the neutron binding energy. Identifying the parts

of '*'1 that are local and due to scattering

we may write for the second order term

6~1 = - ~ yl(E - HorlQyyl<l>o
<,

The renormalized energy shift to lowest order is

which is approximately

6E = - <~ < <l>olyyl(E - Hor'Qyyl!<l>o >,

1. Reaction Rates for Incoherent Neutron Transfers

(6.15)

(6.16)

(6.17)

(6.18)

Delocalized neutrons may be captured by other nuclei with lower binding energies, accompanied

by the emission of gammas or other decay products. An approximate formal expression for this

decay rate can be estimated from the above formulas, by taking advantage of the free neutron

density operator

Peer) = L ¢k."(r)~",,(r)ck.,,tk""
k.k'."

(7.1)
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We obtain the incoherent reaction rate for neutron capture to be

rin = / < '1fllpc(r)l~l > LNo:(r) < uo:v >0 d3 r
•

(7.2)

where No:(r) is the density and < uo:v >0 is the below threshold incoherent neutron capture rate

coefficient of isotopes denoted by Q. Local neutrons from one set of isotopes will have no overlap

with the nuclei of other isotopes in the lattice; delocalized neutrons will have overlaps and will be

incoherently absorbed.

8. Lattice~AssistedNeutron Transfers

In the case that the lattice is able to absorb (or provide) the reaction energy, through the

frequency shift (across a phonon band gap) of a very highly excited phonon mode, during a neutron

hop from one isotope to a nonequivalent isotope, the reaction rate can be found to lowest order

through

(8.1)

(8.2)

where ~ f is the final state, and where V' transfers a neutron to nonequivalent isotopes. We note

that this formula is specific for neutron delocalization of donor neutrons; there is an analogous

formula for acceptor neutron delocalization. Using equation (6.16), this becomes

r = 2: ~ I < ~flv'vt(E _ HO)-lQvvtl~o > l'p(Ef)
" "

It may appear to be surprising that V' should be expected to transfer tens to hundreds of KeV

during a single neutron transfer. Nevertheless, in the presence of very highly excited phonon modes,

the frequency shift of an excited continuum phonon mode is accompanied by an energy transfer

~EL of

(8.3)

where Nm is the number of phonons and where 6wm is the phonon band gap that is crossed. The

frequency shift can be on the order of meV: if N"I'l is of the order of lOs. the resulting energy transfer

will be on the order of 105 eV, \vhich is sufficient to make up the energy mismatch between neutron

binding energies of the ground states of different isotopes.
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9. Reaction Rate Estimates

The neutron lattice Anderson model is new, consequently there remains considerable work in

analyzing and understanding the theory. One approach to estimating rates would be to obtain a

ground state solution for the Anderson problem, and then develop rate estimates from the resulting

delocalized neutron densities. A number of variational ground state solutions for the electron

problem have been described in the literature; with some work, it might be possible to adapt these

solutions for reaction rate estimates. In the case of the slave-Boson model, there now exists ground

state solutions for the decoupled valence and conduction bands; it is very Likely that these solutions

will apply to the neutron Anderson model being considered here. But these projects for now must

remain for future work.

Our goal in this section is to begin examining the rates predicted from the one-neutron approx·

imation discussed in the last section, and to obtain rather rough esimates. It happens that there is

no delocalization in the case of zero phonon exchange with the normal spin-conserving interaction

Hamiltonian; this is discussed below.

In the neutron Anderson model described above, a bound neutron with spin (I is coupled into

a. continuum state with momentum k and spin (I, leaving behind a hole of momentum k. If the

neutron is captured back with no change in momentum or spin, then no delocalization occurs. In

order to achieve delocalization, the virtual neutron must be captured with either an altered linear

momentum or an altered total angular momentum. The interaction with phonons can change the

linear momentum, but the energy exchange that accompanies this process makes it non-resonant

by the phonon exchange energy.

The structure of the lattice can result in nonconservation of angular total momentum during a

neutron hop. Since the lattice is not rotationally invariant around a nucleus, a Cree neutron with

orbital angular momentum relative to an initial nucleus will not generally preserve that angular

momentum when captured by a translated nucleus. This effect allows free neutrons to access de­

generate nonequivalent states, which is very important within Brillouin-\Vigner theory as discussed

below.

We begin the discussion by working with the conventional Anderson model adapted to the

neutron problem, and show that resonant interactions do not occur. We then discuss phonon and

total angular momentum modifications of the model.

We begin by noting that the Yand yt operators that occur in previous sections are given by

(9.1)
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(9.2)V' - '" '" V. -;".,<.., d··- LJ L.. k e ck... >,17
;k6

The operator Vf creates a continuum neutron, leaving behind a hole; V destroys both. Inspection

of the rate formula (8.2) indicates that the product VVf takes the initial state to otber states that

are nearly.degenerate with the initial state ~o. The part of vvtl~o > that is proportional to to
is projected out.

Since ~o contains no neutrons, and VV-tiTo > also contains no neutrons, we find that

VV'I~o >= L L IVkIVk(R.-R')dr.di.• I~o >
ij k ..

(9.3)

At this point, the operator nature of it; becomes important. At low temperature (T ---- 0), it may

be that very few phonons will be created or destroyed on average for low momentum continuum

neutrons. If we examine the O-phonon part of VVt, we find that

< OrVVtlo >~ L2:: IVkI2eik.(R1-R~)e-2WD(k)d1,udj,u
ij ku

(9.4)

where the notation < OIVvtlO > implies zero neutrons present in initial and final states, and zero

phonons generated. The equilibrium center of mass position at site i is R? The expression is

approximate in that we have assumed that there is no correlation between sites i and j in the

calculation of the Debye·Waller factor e-WD(k) at each site. If we define

(9.5)

(9.6)

then it follows that

< OjVVtlO >:::: N L IVkI2e-2WD(kldi:.udk,cr
k.

This result indicates that the hole that is created will be the same hole that is destroyed. In this

equation, the operator dk.cr is taken to be the same as dk+G.u, where G is a reciprocal lattice

vector.

To within an excellent approximation, it follows that there is no free neutron delocalization at

all in the limit described abo....e: for example, if tit creates a matched neutron and hole pair, both

with momentum k. and then i" destroys the same malched pair. ~hen there is no change in the

state of the system. In this case
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and

Q< 0IVVIIO > 'Po = 0

(9.7)

(9.8)

No change in state means no net scattering, which results in no net effects. This mathematical

statement corresponds to the physical arguments given above that the virtual neutron must in some

way be "scattered" in order to be delocatized. We now turn our discussion to this problem.

One approach to the problem is to investigate phonon exchange. It would be possible at this

point to begin an examination of the transition matrix elements, considering first I-phonon matrix

elements, then 2-phonon matrix elements, et cetera. Some work along these lines has been done

recently by Azzam. 4S It may be possible to obtain some advantage by working at the outset with

operators devoid of the zer<rphonon contributions; for example, QVVt could be replaced with the

non·zero-phonon pieee

(9.9)

Further work will clarify the issue.

We wish now to obtain rough estimates of the reaction rates in the case of neutron transfer

reactions. At high temperature, many phonons will be present, and we will assume that contin­

uum neutron creation and distruction will be accompanied by free phonon exchange. We assume

additionally that there are numerous equivalent sites for a scattered continuum neutron to be

reabsorbed.

In the presence of phonon generation, continuum neutrons and holes will be generated with

disparate momenta; the product of the if operators now becomes of the form

VVI_ < 0IVVIIO >= L L"k.k.dL.A,.. (9.10)
k;tk' ff

This operator now creates a neutron hole at one momentum, and then destroys a hole at a different

momentum, with about the same basic interaction strength as in the case discussed above. If we

term the ground state and parent nuclei as donors, with total numbers in the lattice volume V of

ND ground state nuclei and ND" then we approximate

(9.11)

where -'"8 is the number of free neutron Brillouin zones that contribute.
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The arguments for the product V1V t are basically similar, except that now the energy exchange

must be included. We know that ~J has no free neutrons, so that

V(V')'lw[ >= I: ~:Vk(Vk)'e;k(R;-R,)H.dj,.lw[ >
i; k.7

(9.12)

where Atl refers to the nonequivalent isotope. If net energy transfer occurs, it must be accompanied

by a change in the lattice phonon structure. Consider the matrix elements of the phonon operators

over the lattice phonon states

(9.13)

Upon rewriting this matrix element in terms of phonon mode amplitudes qm, we find

(9.14)

where C is a normalization constant originating from the fact that the initial. lattice and final lattice

have a different mode structure and frequencies. )'Iak..ing use of Duschinsky40,<11,8-11 operators e-iSD

allows us to recast this matrix element in terms of initial. state phonon amplitudes qi; we obtain

(9.15)

Only the few modes that jump a phonon band gap are responsible for the primary energy transfer.

Consequently, it is a reasonable approximation to separate the phonon modes into gap-jumping and

non-gap jumping parts, neglecting recoil for the gap-jumping modes, and neglecting mode structure

changes for the non-gap-jumping modes:

(9.16)

In this approximation, we will obtain a total reaction rate estimate of the form

This allows us to approximate

v'v t - VDl:.-l. -,"~!Vn.JXDNA

for the part not involved in lattice energy transfer.
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The average energy of the exchanged phonons appears in the resonant denominatorj we take

(9.19)

where o£m depends on the details of the phonon exchange. In the case of a thermal phonon

distribution near room temperature, this energy will be on the order of kT:~s In the presence of

strong phonon excitation of nearly degenerate phonon modes, this energy can be much smaller.

The density of states is dominated by the lattice energy exchange; we take

(9.20)

which is appropriate for a highly excited classical phonon state. If number states were somehow

generated, then the spread could be lower by several orders of magnitude.

These approximations leads to a total rate crudely estimated to be

r _ 2~lvAllvDI'lvDI'.v N' N,N [NBV"]' IVAI (9.21)
h £~ 6(;'· 5 D D A V (l:!.ELhwm )l/2

where Ns is the number of regions in the lattice that can transfer an energy 6.EL from the lattice

to drive a reaction.

Whether this theory leads to net reaction rates that are observable depends on the numbers,

and we can use equation (9.21) to obtain crude estimates. There are several different situations

to be considered; we consider first transitions mediated by thermal phonons. In this case, the

largest reaction rates will be produced by donors and acceptors both of which interact with s.wave

continuum neutrons. These are listed in Table 1. We choose for a numerical example here silicon,

whieh may be both donor and acceptor e9Si as donor and 29Si as acceptor).

The interaction matrix elements are parametrized by the volume·reduced quantities VD and VA.;

we assume here that IVDI ..... !vAI ..... 106 eV. We take (d '" -9 MeV. The nuclear volume Vn for a

mass 30 nucleus is on the order of Vn "" 1.2 X 10-37 cm3. The ratio NDNBIV is on average the

inverse atomic \'olume to which the donor nuclei are localized: this can be made to be on the order

of (8 x 10-27)-1 em-3. The maximum number of phonon regions capable of transferring about

t1EL = 2.1 MeV is about Ns = 1012 per cmJ . The optical phonon energy 1i~'m. is assumed to be

on the order of 0.035 eV.
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Neutron Binding Neutron Binding Neutron Binding

Isotope Energy (MeV) Isotope Energy (MeV) Isotope Energy (MeV)
'H 2.2244 11750 6.9453 130Xe 9.2555
3H 6.2570 l11Cd 6.9752 1185n 9.3263

1I9Sn 6.4870 115Sn 7.5462 112Cd 9.3980
I13Cd 6.5420 29Si 8.4740 124Te 9.4204
12STe 6.5718 u4Cd 9.0431 1165n 9.5629
129Xe 6.9081 12°5n 9.1055 JOSi 10.6099
123Te 6.9379 126Te 9.1139 'He 20.5817

Table I: Binding energies of neutrons of stable nuclei (and tritium) that will have configuration

mixing with stable parents a.nd s·wave continuum neutron orbitals.

In the case of reactions driven by thermal phonons, the resonant energy is on the order of

6fm "" 0.025 eV. This yields a total reaction rate that is on the order of 7 x 104 sect cm-3 •

The large energy transfer with the lattice is driven by the presence of an optical phonon field

with a. very high modal occupation. If that phonon field is sufficiently strong locally to compete

against the thermal field, then phonon interactions with significantly lower dispersion can occur.

If so, we may take C(m "" fiwmlQ, where Q is the phonon quality factor, which we assume to be on

the order of 103
. This results in a reaction rate that is on the order of 4 x 1010 sec} cm-J .

We ha\'e assumed that the energy transfer with the lattice is mediated by classical states, rather

than by phonon number states. It may be that neutron transfer reactions would generate phonon

number states (speculation at this point); if so, rates two to three orders of magnitude higher would

be produced.

There remain other sources of considerable uncertainty. The assumption of IVAI'" IVDI '" 106

eV is at this point a rough guess; the answer is sensitive to this quantity to the eighth power. The

nuclear potential is known to be able to effectively modify the magnitude of the normalization Vn

considerahly (as is well known in the case of neutron capture on protons).

The level shift predicted by equation (6.18) evaluates to

(9.22)
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using the crude approximations outlined above. Using the numbers for our example, this energy

shift is about 1.7 /:leV, which is small compared to the width o£m' 'We may check for the breakdown

of perturbation theory; for example, the use of only the first term in the Taylor series expansion

for 'Itt given in equation (6.14) requires that

VVI ~ Ivollvol(NDNO')I/2NBV.
(dDEm Ed OEm V

be less than unity in magnitude. It is observed that this is equivalent to the condition

(9.23)

(9.24)

which is satisfied in this example.

We consider a second example in which the acceptor nuclei interacts with p-wave continuum

neutron orbitals, and orthogonality is circumvented by phonon interactions. This example is p0­

tentially interesting since the number of nuclei that interact with ,s·wave neutrons is rather small.

Nuclei that interact with p-wave free neutron orbitals are given in Table II.

Neutron Binding Neutron Binding Neutron Binding
Isotope Ene,gy (MeV) Isotope Ene'gy (MeV) Isotope Ene,gy (MeV)

13C 4.9463 7Li 7.2499 1880s 7.9607
195pt 6.1051 208Pb 7.3682 172Yb 8.0203
183 W 6.1918 184 W 7.4120 200Hg 8.0287
201Hg 6.2299 "Se 7.4195 IS6Gd 8.5373
1810S 6.2914 s7Fe 7.6458

I
54Cr 9.7194

IS7Cd 6.3594 202Hg 7.7548 s8Fe 10.0454
IssGd 6.4349 6iNi 7.8200 ,SSe 10.5009
171Yb

,
6.6147 196pt 7.9225 I 62:-,ri 10.5978

199Hg 6.6640 IS8Cd 7.9383 IS !'if 10.8344
207Pb 6.7376 53Cr 7.9393 11 B 11.4548

Table II: Binding energies of neutrons of stable nuclei (and tritium) that will have configuration

mixing with stable parents and p-wave continuum neutron orbitals.
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(9.24)

Unfortunately, the interaction matrix elements for p-wave transitions will be suppressed by

a factor of kR relative to analogous <s-wave matrix elements, where k is the continuum neutron

wavenumber and where R is the nuclear radius. If a p-wave transition is paired with an ,,-wave

transition, either as donor or acceptor, in a phonon-assisted reaction as described above, then the

resulting rate will be smaller by a factor of (kR)1 which is about 10-8 . Transitions involving d-wave

or higher order interactions will be further suppressed relative to ..-wave transitions.

Rather than seeking modifications in linear momentum of the continuum neutrons as occurs in

the case of phonon exchange as formulated above, we next examine the destruction of orthgonality

through nonconservation of angular momentum. In this case, we consider delocalization of virtual

neutrons by p-wave transitions in the absence of phonon exchange. The basic mechanism was

outlined brieRy above; a donor nucleus with quantum numbers (J)'" and MJ couples through

the strong interaction to a continuum state with identical quantum numbers. If the neutron is

resonantly captured by an equivalent parent nucleus at another site that is translated in space, the

capture can produce a new nucleus with quantum numbers (J)" and MJ. The change in angular

momentum comes about due to the translation; a virtual neutron that has a non-zero angular

momentum relative to one site will generally have a different angular momentum relative to a

distant site. By definition, this route is unfortunately not available to transitions involving s·wave

continuum orbitals, which are initially isotropic, and hence preserve MJ.

Given the terrible price that must be paid for coupling to p-orbitals as discussed above, the

question arises as to what new physics might make such an approach worthwhile? Since no phonon

exchange occurs. this type of int.eraction can be truly resonant, and some ground can be made up

through the presence of smaller resonant denominators.

In this case. the interaction operatJr might be t.aken to be of the form

V· " "V· (k) ;k.R., d~ .= LJ L.J ':1,(1' e i,.,.Ck,cr
i k.,.l7'

although it might be more natural ~o use a Hubbard operator formalism as appropriate to SU(N)

models, in which the non-conservation of angular momentum would show up without any modi·

fications. In this case, the projection problem of equation (9.8) no ionger occurs, The captured

neutron will now produce a deg~nerate new stat.e t.hat is with finite probability not equivalent

to the initial state. The resonaa; denominator is then determined by whatever shifts and widths

are appropriate: for example, n Iclear magnetic and crystal quadrupole interactions will broaden

the nuclear le\-els. The level 51 ift predicted by equation (6,18) wiil be greater than these under

conditions where significant re lct.ions are expected.

We consider an example ill which \'irtual neutron delocalization is present in a p-wa\'e system,
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and the second palr of the donor and acceptor is an ,,:wave system. For example, 62Ni (p-wave)

donating to 29Si (,s.wave) has a very small energy defect of about 12 KeV.

In th.is case, we assume that IVDI- 10-4 ~1eV, IVAI- 1 MeV, and IEDI- 10.6 !\leV. The nuclear

volume of Ni is V" _ 2.4 X 10-37 cm3, and we retain our earlier crude estimate for NDNBIV. The

6tNi linewidth is taken to be 10-11 eV (this is a guess). Using these numbers, we obtain a rate on

the order of 25 sect cm-3• The energy shift is small, lJE N 3 X 10-14 eV, and from th.is we know

that lJEllJEm < 1 implying that perturbation theory does not break down.

If the matrix element VD were larger, due to possible effects mentioned above, then it might be

possible to enter into a nonperturbative regime. With the numbers given, an increase of a factor

of 20 in IVDI would succeed in making "EIDEm> 1; such a correction is by no means out of the

question given the rough approximations used. Whether the nonperturbative regime leads to a

substantial increase in neutron delocaJization is unknown. but is a question of great interest. The

perturbative rate in this case would be about 109 sec-1 cm-3 . Such a mechan.ism would be very

attractive in accounting for excess heat claims in tight water experiments.

We note that the use ofelectromagnetic El or :viI matrix elements in th.is theory leads to reaction

rates below 1O-~ sec-1 per cm3 • The rate depends on the coupling matrix element through 11
8

,

which favors strong force matrix elements.

10. Conclusions and Discussion

The key contributions in this work are: (1) the formulation of a neutron version of the Anderson

model to describe configuration interaction effects between neutron valence and conduction bands;

(2) tne observation that the Wannier overlap from neighboring sites normally responsible for mixing

in the Anderson model vanishes, and must be replaced by tw()onucleon matrix elements in the

neutron Anderson model; (3) the proposal of the one-neutron approximation; (4) the development

of infinite-order Brillouin- Wigner theory solutions that give rise to a useful perturbation theory;

(5) the development of formal rate formulas for incoherent and lattice-assisted neutron transfers;

and (6) the crude estimate of rates in the case of lattice-assisted transfer reactions.

We have developed this model as a. candidate theory to account for anomalous heat production

in Pons-Fleischmann experiments. In connection with these experiments, this model would fit the

reponed observations qualitatively much more closely t~an modified dd-fusion related theories.

Although we have not emphasized the point here. the for:nuias for incoherent neutron capture and

lattice·assisted neutron capture strongly fa\'Ors the lattice-assisted reactions when they can occur;

heat production through this mechanism would be relati\"eiy clean.
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In the case of the Pons-Fleischmann experiments, our earlier suggestions that neutron transfer

reactions between 10sPd and 7Li to account for heat production do not appear to survive the

selection rule considerations discussed in the present work. Possible alternative reactions include

the 29Si to 29Si transfer (leading to 28Si and JOSi) at 2.14 MeV, and the JOSi to lOB transfer at 845

KeV. In the light water experiments, the 62Ni to 29Si transfer at 12 KeV looks most promising.

There remains numerous issues to resolve. The reaction rates discussed in this work are quite

sensitive to transition matrix elements that are not currently well known; these matrix elements

must be quantified as a high priority for further progress to be made. There is a more subtle issue

involving the highly excited phonon modes that must also be considered.

For example, during a single lattice-assisted neutron transfer reaction, the energy transfer occurs

through up·shifting a large number of phonons in a gap-jumping mode. If new phonons had to be

supplied to the next gap-jumping mode before more reactions could occur, the overall dynamics

would be grossly inefficient, and there would be no possibility of reaching the efficiencies claimed

in experiments. In our earlier proposals, we have assumed tha.t the phonons could be brought back

into position through Raman mjxing with lower energy phonons, in essence dumping extra energy

by generating phonons at the difference frequency. An alternative approa.c.h is to simply deay

incoherently back down, since the downward step is exothermic relative to lattice decays which we

have described elsewhere. I 1

There remain numerous other issues that are of interest. For example, the progress in heat­

producing experiments has not yet lead to a generally accepted quantitative demonstration of

reaction product. It is our hope that this work will help to motivate such searches. An alternate

test of the theory would be the activation of a host lattice or impurities through neariy·resonant

neutron transfers. Detection of neutron hopping in null reactions through an isotopically sensitive

self-diffusion experiment would also be of great interest to veriiy the phenomenon discussed in this

work.
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