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Typical CMNS effects do not show nuclear 
signatures

Magnitude of specific energy of Excess Heat (keVs/Pd-atom)? 
not enough by itself to convince in nuclear origin!!!

4He and T accumulation? Detected in atomic form (not as nuclear 
particles), may be extracted from surrounded media: still indirect 
evidence!!! If 4He detected is really from giant enhancement of d(d,γ) 
4He channel of DD-reaction (the rate is ~ 1011 s-1), why no sign of 
intensive (at least 104 s-1 rate) of d(d,p)t and d(d,n) 3He channels 
(even suggesting their suppression by factor 107 compared to “main”
He-4 channel). No intensive X-ray.

“Transmutations”: Only changes in stable isotope are observed. No 
signature of accompanying nuclear emissions and X-ray radiation.
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Nuclear signature of CMNS effects

DD-reaction enhancement during low energy 
deuteron bombardment of metallic targets 
(accelerator and glow discharge experiments)
Low intensity emissions of DD-reaction nuclear 
species: 3 MeV protons, 1 MeV tritons, 2.45 MeV
neutrons
Energetic alpha emission (Eα ≥ 10 MeV). These 
alphas cannot be emitted by natural 
radionuclides/cosmic background.
Soft X-ray (Ex ≤1.5 keV) emission in experiments with 
pulsed Glow Discharge and during D-desorption from 
Pd/PdO:Dx
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I. Enhancement of DD-reaction in metal 
targets

Accelerators (J. Kasagi et al): Low energy, high-current accelerators: 2.5 < 
(Ed)lab < 20 keV, Beam current I ~ 10-300 µA. Energy spread < 1.0 %. Duo-
plasmatron ion source (E ~ 50 keV), decelerating system, magnetic optics to 
deflect neutrals from target. Target cooling system: (77-300 K). Energy spread 
< 1 %.

Pulsed Glow discharge: D2/H2 GD, P(D2) = 2.0 – 10.0 tor. Ti- cathode (S=0.64 
cm2), Mo-anode, (cathode-anode distance: x~ 5.0 mm). Square-shape pulses: 
duration τ = 200–400 µs; rise time ~1 µs pulse; repetition 2.0 kHz; Voltage: U 
=0.8-2.5 kV; Current I=150-450 mA. Stability of U and I:   ± 10 %. Ed energy 
spread ~ 15 %.

Charged particle detectors: Accelerators and GD produce huge noise. Neutron 
detection is difficult. Si-surface barrier (SSB) dE-E. Full noise suppression. 
Detection of 3.0 MeV protons from d(d,p)T reaction. Plastic track detectors 
CR-39 (Ntrack < 20 cm-2) detection of 3.0 MeV protons
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Enhancement of DD-reaction in metal 
targets at low deuteron energy (1.0<Ed<10 

keV)

Most metals show enhancement of DD-reaction yield 
at Ed << 10 keV compared to the standard yield 
obtained by extrapolation of the DD-reaction cross-
section to these Ed (see accelerator experiments: F. 
Raiola et al., Nuclear Physics, A719, 61C (2003), J. 
Kasagi et al., J.  Phys. Soc. Jpn., 71(12), 2881 
(2002)).
Recently, high-current glow discharge measurement 
showed strong enhancement of DD-yield – about 9 
orders of magnitude at Ed =1 keV in Ti target (A. 
Lipson et al., JETP, 100, 1175 (2005).
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Glow discharge set up
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CR-39 track detectors: Proton calibration with 
Van De Graf accelerator Ep = 2.5 MeV

Proton calibration curves for Landuer 
and Fukuvi CR-39 detectors 
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3.0 MeV proton energy estimate by absorption 
in Al-foil
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Yields of 3.0 MeV protons before and 
after normalization to deuterium 

concentration
Yields of 3.0 MeV protons from Ti-cathode vs 

deuteron energy
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DD-reaction enhancement factor (f(E) = 
Yp(E)/Yb(E)=exp[πη(E)Us/E] for Ti-target:     

(1)-accelerator; (2)-GD
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Thick target yields for accelerator and GD 
compared to bare yield
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Data are taken from  F. Raiola et al, Europhys. J.A19, 283 (2004) at  
T0=290K, J0=0.03mA/cm2, Ed≥5keV. 

Points are consistent with increase in y = Me/D: Hf, Y, Lu, Sc, Gd, Tm, Ti, 
Ce, Yb, Sm, Zr, Er, Pr, Eu, Ho, La, Ge, C, W, Sr, Ir, Ba, Ru, Au, Ag, Re, Ni, 

Nb, Ta, Zn, Bi, Mo, Mn, Mg, Cu, Rh, Fe, Pt, V, Pb, Pd, In, Tl.

S c re e ning pote ntial v s . fre e  de ute ron c onc e ntration, 
de duc e d from the  data by F.Raiola e t al, [6]
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Electron Screening in metals
Target/
[Ref.]

∆Ed(lab), [keV] ∆J, [mA] T, [K] Ue, [eV] Closest
metal-host level

E(level), [eV]

Ti[7] 5-30 0.054 263 ≤30 Ti(MII/MIII) 32.6

Ti[9] 2.5-10.0 0.06-0.25 186 65±15 Ti(MI) 58.3

Ti* 0.8-2.45 225-450 ≥1800 610±150 Ti(LII) 461

Au[7] 5-30 0.054 263 61±20 Au(OII) 71

Au[9] 2.5-10.0 0.06-0.25 180 70±10 Au(OII) 71

Pd[7] 5-30 0.054 263 800±70 Pd(MI) 670

Pd[9] 2.5-10.0 0.06-0.30 313 310±30 Pd(MV) 334

PdO[9] 2.5-10.0 0.06-0.30 193 600±20 Pd(MII) 560
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II-III. Low Intensity emissions of DD-
reaction products (N) and energetic alphas

Neutrons emission (references):
Fracture of deuterated dielectrics, LiD, D2O (fractoemission): V.A. Kluyev, A.G. 

Lipson et al, Sov. Tech. Phys. Lett., 1986 (In ~ 10-20 n/impact)

Acoustic cavitation in D2O with Ti horn: A.G. Lipson et al, Sov. Tech. Phys. Lett., 
1990. (In ~ 0.5 n/s).

Ferroelectric phase transition through Curie point (Tc – 220 K) in DKDP single 
crystal, A.G. Lipson et al, JETP, 1993 (In ~ 20 n/transition).

Superconducting phase transition (Tc = 92 K) in deuterated HTSC ceramic 
YBa2Cu3O7-x , A.G. Lipson et al, Tech. Phys., 1995 (In ~ 20-30 n/transition).

Exothermic deuterium desorption from Pd/PdO:Dx heterostructure, A.G. Lipson et 
al, Sov.Tech. Phys. Lett., 1992 (BF3), Fusion Tech., 2000 (NE-213).

Electrolysis of Pd and Ti in D2O: S.E. Jones et al, Nature 1989, A. Takahashi et al, 
1989, T. Bressani et al, 1991, etc.
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Example: Neutron detection from Au/Pd/PdO:Dx sample (in the 
cell) with pair of NE-213 low Background/20m underground facility, 
Hokkaido University (A. Lipson et al . Fusion Tech, 38, 2000), 

Σε(2.45 MeV n) = 10 %
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Energy distributions of neutron counts from NE-
213 detectors: high gain system 1 (a), low gain 
system 2 (b)
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Neutron spectra of Au/Pd/PdO:Dx sample (with 
background subtracting) in the 2-3 MeV range derived 
from high  gain (a)  and low gain (b) NE-213 detectors:
In = (1.8 ± 0.19)x10-2 n/s



ICCF-13, Sochi, 06/25-07/01, 
2007

Low Intensity emissions of DD-reaction 
products (p & T) and energetic alphas

p-t coincidence measurements at thermal deuterium 
desorption from TiDx system (S.E. Jones et al, ICCF-
10).
Random 3 MeV proton emission in Pd/PdO:Dx during 
exothermic deuterium desorption measured with 
surface Si barrier detectors (A.G. Lipson et al, Fusion 
Tech., 2000).
Reproducible 3 MeV proton and energetic alpha (E > 
10 MeV emissions in controllable D-desorption from 
Pd/PdO:Dx with CR-39 (Lipson et al, ICCF10-12)  
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Typical charged particle background in 
vacuum (t=8 days in a row)
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Typical weak spontaneous DD-proton emission 
from Au/Pd/PdO:Dx (after electrolytic D-loading) in 

vacuum
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dE/E Background spectra of charged particles 
from pristine Au/Pd/PdO sample

dE/E Au/Pd/PdO Background run 
(dE/E TDC 750-920 ch, gate 20 ns)
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dE/E (SSB: dE=20µm, E=100 µm) 2-dimensional 
spectra of charged particles from Au/Pd/PdO:Dx (after 

electrolysis)
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Example of reproducible nuclear emissions in controlled 
conditions of exothermic D-desorption from 
PdO/Pd/PdO:Dx hetero-structure. Objectives

To obtain reproducible nuclear emissions in 
controlled conditions of exothermic D-desorption
from PdO/Pd/PdO:Dx hetero-structure.
DD-reaction yield (3.0 MeV protons)
Energetic alphas
Soft X-rays ?
Control of sample temperature and D-desorption rate 
on-line.
To figure out how these emissions could be linked via 
D-desorption
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Sample preparation
The samples of Pd/PdO were synthesized by thermal growing of 
thin oxide layer (PdOy) of ∼ 20 nm thick on top of 110 µm thick 
annealed cold worked Pd foils (area 5x2 cm2) using an oxygen-
propane torch.
Electrochemical loading of Pd/PdO cathodes by x=D(H)/Pd = 
0.7; j ~ 20 mA/cm2 in 1M-LiOD/D2O using a special cell with 
divided cathode and anodic spaces.
In control experiments a similar Pd/PdO sample was 

electrochemically loaded with hydrogen in 1-M NaOH/H2O
The Pd/PdO:Dx sample with attached CR-39 or thermal 
luminescent (TLD) detectors is placed under mechanical loading
(m=150 g) for one hour at T =20 °C
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Nuclear Detection

Charged particle detection: CR-39 (Landauer inc) with set of 
metal filters (Al 11-44 µm , Cu 25 µm thick) in order to estimate 
type and energy distributions of emitted particles: Time of 
exposure t = 12 x 3600 s, accordingly to maximal D-desorption
rate.

Identification of individual tracks by in-depth etching of CR-39 
(etching depth in the range of 9.2 - 46 µm (7-35 h etch in6N-
NaOH at 70° C) – 3D analysis. Comparison of track diameters 
with that of similarly etched calibration detectors irradiated with 
proton or alphas of various energy. 
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Integral deuterium desorption from 110 µm 
Pd/PdO heterostructure vs. elapsed time
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Pd/PdO:Dx temperature vs. elapsed time
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Alpha-sources and Cyclotron alpha beam 
calibration (2-30 MeV) of CR-39

Alpha calibration curves for Fukuvi and 
Landauer CR-39 detectors
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Foreground and Background counts from 
Pd/PdO:Dx and Pd/PdO; open CR-39 detector
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Comparison of Pd/PdO:Dx and Pd/PdO:Hx track 
distribution (with Background Pd/PdO

subtraction)
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Charged particle spectra of Pd/PdO:Dx with 44 
µm Al filter
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Pd/PdO:Dx spectra with 25 µm Cu filtered CR-39
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Charged particle spectra for Pd/PdO:Dx and 
Pd/PdO:Hx filtered with 25 µm Cu (with background 

subtraction) 
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Protons of 3±0.3 MeV incident energy from 
Pd/PdO:Dx are consistent with their stopping 

power in Al and Cu filters
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Results on DD-reaction yield and rate

Exothermic D-desorption from Pd/PdO:Dx generate reproducible DD-
reaction yield. Taking into account detection efficiency ε = 1/2(1-
cosΘc), where Θc – is the critical angle for 3 MeV protons (32-37°) we 
obtain this yield as Yp(DD) = (1.15 ± 0.13)x10-2 p/s in 4 π steradian.

The yield of 3 MeV proton is in good agreement with 2.45 MeV
neutron yield obtained with NE-213 detector pair for similar samples 
during D-desorption: Yn(DD) = (1.8 ± 0.19)x10-2 n/s (A. Lipson et al, 
Fusion Tech., . 38, 257 (2000)).

Calculated mean D-desorption rate in Pd/PdO:Dx or deuteron current 
from the sample found to be dN/dt = 17 mA/cm2. The DD-reaction 
yield in that case was Y(DD) = 0.6 p/C(D). This result suggests very 
high screening potential Ue > 1.0 keV in Pd/PdO:Dx



ICCF-13, Sochi, 06/25-07/01, 
2007

Rough Reconstruction of alpha 
spectrum from CR-39 data 
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Energetic alpha emission results

Using critical angles for 11-16 MeV alphas Θc = 42 °
we obtain the yield of energetic alpha particles in 
Pd/PdO:Dx during exothermic D-desorption Yα = 
(5.5±0.9)x10-3 α/s in 4 π ster. 
Pd/PdO:Hx samples during H-desorption
demonstrate 11-16 MeV spectra that are very 
similar to that of Pd/PdO:Dx. The yield of alphas  at 
H-desorption is also similar to D-desorption case. 
Reproducibilty of both DD-reaction and energetic 
alpha emissions during D-desorption is close to 
100%.
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IV. X-ray emission measurements in pulsed GD

Sensitive Al2O3:C TLD with a set of 15-300 µm (2.8-
55.5 mg/cm2) thick Be-foils, pin-hole camera; plastic 
scintillattor

Seven TLD, 5 mm diameter each were located 70 
mm from the back side of anode, outside of 
discharge zone. 

In special experiments to obtain the exact position of 
X-ray source in GD, Mo-anode was shifted 20 mm 
with respect to cathode.

TLD calibration with a standard Cs137 γ-source
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using the pin-hole camera. The objective of 0.3 
mm diameter is narrowed by use of a 15µm Be 
shield in front of the camera. (The image is a 

positive imprint)
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X-ray energy measurement in Ti/D2 PGD 
Karabut’s type (A. Lipson et al, JETP, 2005)
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Correlation between X-ray and current pulses in GD
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Emitted doses and X-ray yield from Ti-cathode 
vs. Effective power P*=UIQ; Yield is described 

by a formula: Ix = I0 exp[(ε/kTm)P*x/P*0]

X-ray emitted dose vs. discharge effective power
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X- ray quanta energy in Pd/PdO:Dx foils after 
electrolysis estimated with 5 pairs of X8 TLD 

with 0-60 µm PPE filters
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X8-LiF TLD/PPE filters
 Fit: Ih/I0 = exp(-µmhPPE), µm(PPE) =893 cm-1

            <Ex> = 1.30 ± 0.15 keV

            <I0> = 8.0 ± 2.0 X/s-cm2 in 4π ster.

• X-ray detection: photo-
insensitive X8 LiF TLD 
(Landauer) units (S= 2x2 
mm2, h=1 mm) open and 
filtered by 1-4 layers of 15 
µm polypropylene (PPE) 

• 100 runs of 1-48 hr 
duration 

• 50 µm Pd/PdO:D sample 

• TLD reading was carried 
out in Landauer inc.
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X-ray dosimetry and flux estimate

The open TLD showed dose D = 12 ± 2 mrad = 120 µGy. In SI 
system the equation connecting the dose Dx [Gy] absorbed by 
LiF TLD with area s= 0.04 cm2 and mean flux <Φx> would be 
written:

<Φx> = 2Dxρ(LiF)/1.6×10-13 [J/MeV]× Ex× µm×
(s/1cm2)×τ ≅ (8 ± 2 ) X-quanta/cm2-s,
where ρ(LiF) – is the density of LiF, Ex = 1.3 keV is the X-ray 
quanta energy and τ = 7 x105 s – is the total time of TLD 
exposure with Pd/PdO:Dx sample.

The estimated dose obtained from charged particle absorption 
by LiF TLD is less than 1 mrad (below detection limit).
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Conclusions for controlled D-desorption
from Pd/PdO:Dx experiment

Good reproducibility of charged particle emissions during 
GD operation and controlled exothermic D-desorption
from Pd/PdO:Dx

Relatively high 3 MeV proton yield indicating large DD-
reaction enhancement during D-desorption

No direct sign of 1 MeV tritons: means that effective 
depth where DD-reaction originates is ~ 2 µm from the 
surface. This estimate is in  agreement with energy losses 
for 3 MeV protons  

Identity between energetic alpha spectra during D and H-
desorption from Pd/PdOD(H) 
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Conclusions II

The energy of X-ray quanta emitted from Pd/PdO:Dx is in good 
agreement with Karabut’s glow discharge results. Suggests similar 
mechanism caused by D-desorption

Observed nuclear effects in metals cannot be explained by fracto-
fusion because the electric field in the cracks would be too low.  
Phonon energy of D-desorption focusing or/and concentration in some 
specific lattice sites near surface (the sites of a high internal strain ?)

DD-reaction, energetic alphas and X-ray emissions suggest anomalous 
energy release via “active” lattice sites of non-equilibrium metal 
deuterides, indicating intra-atomic electric fields of E ~ 1010 V/cm

Entire results showed that Exothermic D-desorption is that obvious link 
between DD-screening, soft X-ray emission and  high energy alpha 
generation from the surface of Pd/PdO:Dx
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Possible mechanism - speculations

Applied energy focusing/concentration in some 
specific lattice sites near surface (the sites of a high 
internal strain ?)

Coherent energy transfer from DD-reaction sites to 
the light nuclei (P.L. Hagelstein)

Effective acceleration of these nuclei (p, d and 4He) 
by intra-atomic electric fields

ECP emissions suggest anomalous energy release via 
the “active” lattice sites of non-equilibrium metal 
deuterides/hydrides
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How to convince physicists in nuclear 
origin of Excess Heat effect ?

Complete experiment with simultaneous detection of 
excess heat, atomic 4He, 3T, charged particles (DD-
products +energetic alphas) and neutron emissions, 
as well as soft X-rays (Ex ≤ 2.0 keV), not 
characteristic Kα of Pd)
Search for correlations between excess heat events 
and emissions of atomic, nuclear species and X-rays
Special electrolytic cells and appropriate state-of-
the-art calorimetric and nuclear detection equipment.
To use novel (nanostructured/nanolayered) samples 
as the cathodes (Pd-SWCNT-Pd, Pd-Re-Pd and PdO-
Pd-PdO) with enhanced charged particle yield.


