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Experimental Observations

• (D+D) fusion in free space (E ≥ 10 keV):

{1}   D + D→ p + T + 4.03 MeV

{2}   D + D→ n + 3He + 3.27 MeV

{3}   D + D→ 4He + γ + 23.8 MeV

R{1}≈R{2}  and R{3}/R{1}≈10-6

● (D+D) fusion in metal (E ≤ 0.1 eV) (m represents a host metal 

lattice or metal particle) :

{4}   D(m) + D(m) → p(m) + T(m) + 4.03 MeV(m)

{5}   D(m) + D(m) → n(m) + 3He(m) + 3.27 MeV(m)

{6}   D(m) + D(m) → 4He(m) + 23.8 MeV (m)

Fusion rate R{6} for {6} is much greater than rates R{4} and R{5}
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(D+D) fusion in metal (E< 0.1 eV)  (m represents a host metal lattice or metal 

particle) :

{4}   D(m) + D(m) → p(m) + T(m) + 4.03 MeV(m)

{5}   D(m) + D(m) → n(m) + 3He(m) + 3.27 MeV(m)

{6}   D(m) + D(m) → 4He(m) + 23.8 MeV

Experimental Observations (as of  2008) (not complete)

From both electrolysis and gas loading experiments

[1]  The Coulomb barrier between two deuterons are suppressed

[2]  Excess heat production (the amount of exess heat indicates its nuclear origin)

[3]  4He production comensurate with excess heat production, no 23.8 MeV gamma ray

[4]  Production of hot spots and micro-scale crators on metal surface

[5]  Detection of radiations

[6] Production of nuclear ashes with anomalous rates: R{4} << R {6}   and  R {5} << R{6}

[7]  “Heat-after-death”

[8]  Requirement of deuteron mobility (D/Pd  > 0.9, electric current, pressure gradient, 

etc.)

[9] Requirement of deuterium purity (H/D << 1)

[10] More tritium is produced than neutron R(T) >> R(n)
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Based on a single physical concept, can we come 

up with a consistent physical theory which could 

explain all of the ten experimental observations ?

Deuterons become mobile in metal when electric 

current (Coehn 1929), and/or pressure gradient is 

applied !

Explore a concept of “nuclear” Bose-Einstein 

Condensation of deuterons in metal for 

developing a consistent physical theory to explain 

the experimental observations, [1] through [10].
4



Requirement for

Bose-Einstein

Condensation 

(BEC):

λDB > d

where d is the

average distance 

between 

neighboring

two Bosons

55
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Created in 1995 by C. Wieman,

E. Cornell, W. Ketterle, et al.

 Nobel Prize in 2000



Atomic BEC vs. Nuclear BEC

BEC Requirement:  λDB > d,   λDB =           or  υkT < υc

Atomic BEC: d ≈ 7 x 103 Å = 0.7 μm (for  nRb = 2.6 x 1012/cm3)

υc ≈ 0.6 cm/sec (υkT≈ 0.58 cm/sec, at T ≈ 170 n Kelvin)

( ~ 2000 atoms in BEC out of ~ 2 x 104 atoms  10 % in BEC)

(1) Increase λDB by slowing down neutral atoms

using laser cooling and evaporation cooling

Nuclear BEC:  d ≈ 2.5 Å (for   nD = 6.8 x 1022/cm3 in metal)

υc ≈ 0.78 x 105 cm/sec   (υkT ≈ 1.6 x 105 cm/sec at T= 300 Kelvin)

(1) Increase λDB by slowing down charged deuterons using 

electromagnetic fields, pressure gradient, and/or cooling

(2) Decrease d by compression using ultrahigh pressure 

device such as Diamond Anvil Cell (DAC)

h

mυ
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Fraction F of Deuterons in the BEC State in Metal at 

Various Temperatures

At 300ºK  with Ec= 0.00655 eV corresponding to   

F (Ec) = ~0.084 (8.4% !),  ( ~10% for the atomic BEC case)

Since mobile deuterons in metal are localized within several metal

lattice sites, 8.4 % of mobile deuterons with υ ≤ υc 

(satisfying λDB > d) may not encounter each other frequently

enough to form the BEC.

Need to increase 0.084 (8.4%) to 0.28 (2/7 or 28%) (which is 

based on a geometrical argument), or

Collect 8.4% into localized regions by applied EM fields.

At 77.3ºK (liquid nitrogen), F(Ec) = ~0.44 (44%) 

using Bose-Einstein distribution

At 20.3ºK (liquid hydrogen) F(Ec) = ~0.94 (94%) 

using Maxwell-Boltzmann distribution.

2.5 ,
dB

d


  
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Boson-Einstein Condensation (BEC) Mechanism

N-Body Schroedinger Equation for the BEC State

For simplicity, we assume an isotropic harmonic 

potential for the deuteron trap. 



N-body Schroedinger equation for the system is

2 2N N
2 2

ii
i ji=1 i=1 i<j

1 e
H= Δ + mω +r

2m 2 r -r
  

where m is the rest mass of the nucleus.                                    

In presence of electrons, we use the shielded Coulomb potential 

(Debye screening) 

(1)

(2)

  H E

where Hamiltonian is given by

BEC Mechanism
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The total fusion rate Rt is given by

(19)

1/ 2

2D

t trap trap trap D

N 1 3
R N R R Vn

N 4

 
    

 

Only one unknown parameter is the probability of the BEC 

ground-state occupation, .

→ Observation [1] The Coulomb barrier between two 

deuterons are suppressed.

Total Reaction Rate
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where A = 2Sħ / (π me2) with S = 55 keV-barn,  Dtrap is the average 

diameter of the trap,  Dtrap= 2 <r>,  ND is the total number of deuterons,  N 

is the number of deuterons in a trap, and nD is the deuteron density.



 For a single trap (or metal particle) containing N deuterons, we 

have for primary reactions:                    leading to secondary reactions

●

●

●

         4N 2 D's D D ψ* He N 2 D's Q 23.84 MeVBECψ       

leading to micro-scale explosions or “melt-down”

where ψBEC is the Bose-Einstein condensate ground-state (a coherent 

quantum state) with N deuterons, and ψ* are continuum final states.  

Excess energy (Q value) is absorbed by the BEC state and shared 

by reaction products in the final state. 

 Observation [2] Excess heat production and [3] 4He 

production, without 23.8MeV gamma rays.

 3D fusion (D + D + D) and 4 D fusion are possible, but their 

fusion rates are expected to be much smaller than that of the 2D 

fusion, leading to secondary effects. 11

     4D's ψ* ( /2) He Q ( /2) 23.84 MeVBECψ N N N 



Conversion of nearly all deuterons to 4He by BECNF in 

metal grains and particles in the host metal

 Sustained BECNF and heat production

 Episodes of  “Melt Down” reported by 

Fleischmann and others

• Excess energies (Q) leading to a micro/nano-

scale explosion creating a crater/cavity and a 

hot spot with firework-like tracks.     

• Size of a crater/cavity will depend on number of 

(D + D) fusions occuring simultaneously in BEC 

states.

•  Observation [4] Production of hot spots and 

micro-craters. 12
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leading to secondary reactions

Total Momentum Conservation

• Initial Total Momentum:

• Final Total Momentum:

• <T> is the average kinetic energy.

• ~1 keV (up to 23.8 MeV) deuterons from {6} lose 

energies by electrons and induce X-rays, γ-rays, and 

Bremsstrahlung X-rays.    

 Observation [5] Detection of radiations.

N-2 4 4DD He He

Q{6}
{6}  P 0,     T T  

N
  

N
D

 P 0
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Selection Rule for Two-Species Case

(m is mass number approximately given in units of the nucleon mass) 
2

2

1

1

m

Z

m

Z


3

1 2 2 2 2

3

1 2 2 2 2

Z (D) Z (p) Z (T) Z (n) Z ( He)1 1 2
, 1, , 0,

m (D) 2 m (p) m (T) 3 m (n) 3m ( He)

  
      

   

•Reactions {4}  and  {5} are forbidden/suppressed→ reaction rates are small

{4}  D(m) + D(m) → p(m) + T(m) + 4.03 MeV (m)

{5}  D(m)+D(m) → n(m) + 3He(m) + 3.27 MeV (m)

____________________________________________________

•Reaction {6} is allowed → reaction rate is large

{6}   D(m)+D(m)→4He(m) + 23.8 MeV (m)

→ This explains Observation [6]  R(4) << R(6) and R(5) << R(6).

4

1 2

4

1 2

Z Z ( He)(D) 1
= =

m (D) 2m ( He)

Selection Rule
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• Heat after Death  (Observation [7])

Because of mobility of deuterons in Pd nanoparticle traps, a 

system of ~1022 deuterons contained in ~ 1018 Pd nanoparticle 

traps is a dynamical system (in 3 g of 5 nm Pd nanoparticles). 

BEC states are continuously attained in a small fraction of the 

~1018 Pd particle traps and undergo BEC fusion processes, until 

the formation of the BEC state ceases.

• Deuteron Mobility Requirement  (Observation [8])

D/Pd ≥  ~0.9 is required for sustaining deuteron mobility in Pd. 

Electric current or pressure gradient is required.

• Deuterium Purity Requirement   (Observation [9])

Because of violation of the two-species selection rule, 

presence of hydrogens in deuteriums will surpress the formation 

of the BEC states, thus diminishing the fusion rate due to the BEC 

mechanism.
15



(c) Mixed oxides of PdZr
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Fig. 3(c):  A. Kitamura et al., Physics Letters A, 373 (2009) 3109-3112.

16

•Consistent with [8] the requirement of deuteron mobility 

(D/Pd > 0.9,  electric current, pressure gradient, etc.)

•Output power of 0.15 W corresponds to Rt ≈  1 x 109 DD fusions/sec 

for  D+D → 4He + 23.8 MeV



BEC Mechanism on Reactions {4} and {5}

(Secondary Reactions)

• R{4}  <<  R{6},   R{5}  <<  R{6},  due the selection rule

where neutron, n(m), is at energies ~keV.

• ~keV neutron(m) from Reaction {5} can undergo further   reactions, 

{12}, and/or {13} below:

{12}   n(m) + D(m) (in BEC State) → T(m) +6.26 MeV(m)

{13}   n(m) + D → T + γ + 6.26 MeV

→ Reactions {12} and {13} produce more tritiums than neutrons, R(T)  >  

R(n).

→ R(T)  > R(3He)

This explains Observation [10] more tritium is produced 

than neutron.

     
     

    )(8.23)(}6{

)(27.3)(}5{

)(03.4)(}4{

4

3

mMeVmHemDmD

mMeVmTmnmDmD

mMeVmHempmDmD







Selection Rule
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Experimental Tests of Predictions of BECNF theory

1.  Tests based on the average size of metal particles

2.  Tests for reaction-rate increases by applied EM fields

3.  Tests for resistivity change

4.  Tests for scalability 

Basic Fundamental Tests of “Nuclear” Bose-Einstein 

Condensation of Deuterons in Metal

5.  Ultrahigh pressure experimental tests

6.  Low temperature experimental tests

 These experimental tests are needed

(1) to improve and/or refine the theory, and also

(2)   to achieve 100 % reproducibility for experimental results, and 

for possible practical applications.

18



Experimental Tests 
1. Tests based on the average size of metal nanoparticles

● The total fusion rate is given by

(19)

where Ntrap is the total number of traps, ND is the total number of deuterons, N 

is the number of deuterons in a trap, and Ω is the probability of the BEC 

state occupation. 

For the case of Ω proportional to the ratio of surface area/ volume of each 

particle:     

Rt (smaller Pd particles) > Rt (larger Pd particles)                                                                                                        

● The above theoretical prediction [Kim, Naturwissenschaften 96 (2009) 

803-811 (14 May 2009)] is experimentally confirmed by A. Kitamura et 

al./ Physics Letters A 373 (2009) 3109-3112 (4 July 2009)

1/ 2

2D

t trap trap trap D

N 1 3
R N R R Vn

N 4 π

 
    

 

 

 

 

 
t t

t t

R 5nm R 2nm
2, 5,

R 10nm R 10nm
etc. t trap

trap

1
R (D )

D


1919
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(a) 0.1-mmf Pd
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(c) Mixed oxides of PdZr
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Rt (10.7-nmφPd) > Rt (0.1μmφPd)

5 g of

100 nm Pd particles

3 g of

10.7 nm Pd particles

 
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t

t

R 10.7 nm Pd

R 100 nm PD
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9.3
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 



2. Tests for reaction-rate increases by applied EM fields

Increase of reaction-rate is expected by increase of BEC deuteron 

fraction which can be accomplished by applied EM fileds 

(electric currents (AC or DC), external electric field, external 

magnetic field, etc.)

3.  Tests for resistivity change

Measure resistivity change which is expected when BEC occurs. 

4.  Tests for scalability

Examples:
 
 

etc. 10
particles Pd 3g

particles Pd 30g

 same for the 

,



t

t

traptraptraptrapt

R

R

RNRNR

keV
N

Q
~

}5{

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5. Proposed Basic Fundamental Tests of “Nuclear” BEC - I

Schematics of the core of a diamond anvil cell. 

The diamond size is a few millimeters at most

 Ultrahigh pressure experimental tests

22

● Apply electric current 

through the sample.

● Sudden change in the 

resistivity is expected 

when deuterons form a 

BEC state at some 

pressure.

● Emission of radiations 

and neutrons may be 

expected when BECNF 

occurs.

● Possibility of using 

laser beam to measure 

Raman scattering 

frequency shifts.

(Deuterated Pd, 50-300 μm) 

22



6.  Proposed Basic Fundamental Tests of “Nuclear” BEC - II

 Low temperature experiments

● Test of theoretical prediction Rt(Tlow) > Rt(Thigh)

● At liquid nitrogen temperature (77.3 Kelvin), the fraction F(Ec) 

of mobile deuterons in metal satisfying  λDB > d ≈ 2.5 Å

or  E < Ec = 0.00655 eV  is  F(Ec) = ~ 0.44 (~44% !)

● At liquid hydrogen temperature (20.3 Kelvin), F(Ec) = ~ 0.94 

(~94 % !),  using Maxwell-Boltzmann distribution.

● Apply electric current through the sample.

● Change in the resistivity is expected when deuterons form a 

BEC state at some lower temperatures

● Emission of radiations and neutrons may be expected when 

BECNF occurs, as secondary effects.

● Shifts in Raman scattering frequencies are expected when 

BEC occurs
232323



Other Potential Applications of the Concept of 

Bose-Einstein Condensation of Deuterons in Metal

1. Transmutation

2. Transient Acoustic Cavitation Fusion 

3. High Temperature Superconductivity of 

metal/alloy hydrides/deuterides

24



Conclusions and Summary
● BECNF Theory provides a consistent conventional theoretical 

description of the experimental observations, [1] through [10].

● Experimental tests of a set of six (6) key theoretical predictions 

are proposed including two basic fundamental experimental tests 

of the concept of “nuclear” Bose-Einstein condensation of 

deuterons in metal 

● Experimental tests of the predictions of the BECNF theory are 

needed in order (1) to improve and/or refine the theory, and also 

(2) to achieve 100 % reproducibility for practical applications.

● If the theoretical predictions are all confirmed experimentally, the 

concept of Bose-Einstein condensation of deuterons in metal may 

become a new discovery. 25
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Example with 3g of 50        Pd particles

• Total number of Pd atoms in 3g, NPd = 1.7 x 1022 Pd  atoms

NPd = 3g × (6.02 × 1023)/106.4g ≈ 1.7 × 1022 Pd atoms

For ND ≈ NPd,  ND = 1.7 × 1022 D atoms

• The number density of Pd,                                                          

nPd = 12.03 g cm-3 × (6.02 × 1023)/106..4 g ≈6.8 × 1022cm-3

• One Pd particle of diameter ~                contains                                                                        

deuterons

• In 3g of Pd particles, the total number of Pd particle traps is

particle traps

• For comparison,  ~ 2000 atoms are trapped for the atomic case.

o

A

DPd ncmn  3221086.

o

A50 4450A50
6

3
o




















DnN
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3

22

1083
10454

1071
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Theoretical derivations of BEC nuclear fusion rates are given in the 

following references:

Approximate Solution of Many-Body Schroedinger Equation
1. Y.E. Kim and A.L. Zubarev, “Equivalent Linear Two-Body Method for Many-

Body Problems", J. Phys. B: At. Mol. Opt. Phys. 33, 55 (2000). 

2. Y.E. Kim and A.L. Zubarev, “Equivalent Linear Two-Body Method for Bose-
Einstein Condensates in Time-Dependent Harmonic Traps", Physical Review 
A66, 05362 (2002). 

Optical Theorem Formulation of Nuclear Reactions
3. Y.E. Kim, Y.J. Kim, A.L. Zubarev, and J.-H. Yoon, “Optical Theorem 

Formulation of Low-Energy Nuclear Reactions", Physical Review C55, 801 
(1997). 

Nuclear Fusion Rates for Deuterons in the BEC State
4. Y.E. Kim and A.L. Zubarev, “Nuclear Fusion for Bose Nuclei Confined in Ion 

Traps", Fusion Technology 37, 151 (2000). 

5. Y.E. Kim and A.L. Zubarev, “Ultra Low-Energy Nuclear Fusion of Bose Nuclei 
in Nano-Scale Ion Traps", Italian Physical Society Conference Proceedings, 
Vol. 70, (May 2000), pp. 375-384.
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Fusion Reaction Rates

Our final theoretical formula for the  nuclear fusion rate 

Rtrap for a single trap containing N deuterons is given by

(18)

BEC mechanism

2

3

3
ω α

4π

c N

m r

 
  

 

 

   2 2
B B

where r is the radius of trap/atomic cluster, r = Ψ r Ψ ,

B  is  given by  B=3Am/ 8πα c ,

N  is  the average number of Bose nuclei in a trap/cluster.

A  is  given by A=2Sr / π , where  r = / 2μe , μ=m/2,

S  is  th
3      

e S-factor for the nuclear fusion reaction between two deuterons (for D(D,p)T and 
D(d,n) He reactions, S  55 keV-barn)   

2ω
trap

R BN 
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All constants are known except Ω, which is the probability of the 

BEC ground state occupation



Equivalent Linear Two-Body (ELTB) Method
(Kim and Zubarev, Physical Review A 66, 053602 (2002))

For the ground-state wave function , we use the following 

approximation 
(3 1) / 2

( )
( )( ,... )N Nr r




 


  

where
1/ 2

2

1

N

i

i

r


 
  
 


It has been shown that approximation (3) yields good results for the case of 

large N (Kim and Zubarev, J. Phys. B: At. Mol. Opt. Phys. 33, 55 (2000))

By requiring that       must satisfy a variational principle                           with a 

subsidiary condition                         , we obtain the following Schrödinger 

equation for the ground state wave function ()

 * 0H d   
* 1d  

2 2 2
2 2

2 2

(3 1)(3 3)
[ ( )]

2 2 2 4

d m N N
V E

m d m
  

 

 
      

(3)

(4)

2 (3 / 2)
( )

3 2 (3 / 2 3/ 2)

N N
V

N


 




 
where (5)
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Optical Theorem Formulation of Nuclear Fusion Reactions        
(Kim, et al. Physical Review C 55, 801 (1997))

In order to parameterize the short-range nuclear force, we use the optical theorem 

formulation of nuclear fusion reactions.  The total elastic nucleus-nucleus amplitude 

can be written as
( ) ( ) ( )cf f f   

where           is the Coulomb amplitude, and          can be expanded in partial waves( )cf  ( )f 

2 ( )( ) (2 1) (cos )
c
li n el

l

f l e f P


   

In Eq. (7),         is the Coulomb phase shift,                                       , and         

is the l-th partial wave S-matrix for the nuclear part.

c

 ( 1) / 2n(el) nf S ik   ns

For low energy,  we can write (optical theorem)

( )Im
4

n el rk
f 




where       is the partial wave reaction cross section.
r



In terms of the partial wave t-matrix, the elastic scattering amplitude,            can be 

written as  

( )n elf

( )

2 2

2n el c cf t
k

   

m
    

where         is the Coulomb wave function. c



(6)

(7)

(8)

(9)
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Parameterization of the Short-Range Nuclear Force

For the dominant contribution of only s-wave, we have

( )

0Im
4

n el rk
f 




( )

0 0 0 02 2

2n el c cf t
k

m
  

Where          is conventionally parameterized as 
r

2r S
e
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2

2

1
, , / 2

2 2
B

B

r m
kr e

 m
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  
,             is the “Gamow” factor,

2e 

From the above relations, Eqs. (10), (11), and (12), we have 

0 0 02 2

2
Im

4

r c ck
t

k

m
  


   

For the case of N Bose nuclei, to account for a short range nuclear force between two 

nuclei, we introduce the following Fermi pseudo-potential ( )FV r

0Im Im ( ) ( )
2

F A
t V r r  

where the short-range nuclear-force constant A is determined from Eqs. (12) and (13) to 

be                      . 2 /BA Sr 

For deuteron-deuteron (DD) fusion via reactions D(d,p)T and D(d,n)3He,                            

the S-factor is S = 110 KeV-barn.

and 

(10)

(11)

(12)

(13)

(14)

and S is the S- factor for the nuclear fusion reaction between two nuclei.
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Derivation of Fusion Probability and Rates

For N identical Bose nuclei confined in an ion trap, the nucleus-nucleus fusion rate is 

determined from the trapped ground state wave function  as 
Im2 i j ij

t

t
R

 



  
 

  

where           is given by the Fermi potential Eq. (14),                              .                    Im ijt

From Eq. (15), we obtain for a single trap

3

4
t B

c
R B Nn

m




 
   

 

where  is the probability of the ground state occupation, 
2 3/ , /Be c n N r    

is Bose nuclei density in a trap, and                      with

For the case of multiple ion traps (atomic clusters or bubbles), the total ion-trap nuclear 

fusion rate R per unit time and per unit volume, can be written as

3

4
t B

c
R n B Nn

m




 
   

 

where nt is a trap number density (number of traps per unit volume) and N is the 

average number of Bose nuclei in a trap.

Im ( ) / 2ijt A r 

(15)

(16)

(17)

3 /8B Am c 2 /BA Sr 
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Selection Rule for Two Species Case

Mean-Field Theory of A Quantum Many-Particle System

(Hartree-Fock Theory)

We consider a mixture of two different species of positively charged

bosons, with N1 and N2 particles, charges Z1≥0 and Z2≥0, and rest

masses m1 and m2, respectively. We assume

The mean-field energy functional for the two-component system is 

given by generalization of the one-component case

(20)

where

is density of specie i,  and                                                      (21)                      
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The minimization of the energy functional, Eq. (20), with subsidiary 

conditions, Eq. (21), leads to the following time-independent mean-field 

equations.

(22)

where 

(23)

and μi are the chemical potentials,                  (general thermodynamics 

identity).

In the Thomas-Fermi (TF) approximation (neglects the kinetic energy terms 

in Eq. (22)),   Eq. (22) reduce to

(24)

which leads to the selection rule (derivation in a backup slide),
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Selection Rule
For the BEC mechanism for LENR, we obtain nuclear charge-mass selection rule (approximate).

Nuclear mass-charge selection rule:

We can obtain from Eq. (24)                           that 

Since μi are independent of r,  we have proved that Eq. (23) has non-trivial solution if and only if

(25)

If we assume ω1=ω2, 

and we have from Eq. (25), λ=m2Z1/m1Z2=1 or
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Fraction of Deuterons in the BEC State in Metal at 

Room Temperature
For Bose-Einstein distribution, the distribution function is given by

where                                                 with the deuteron density, nD.

Using the density of (quantum) states N(E) given by

the total number of N can be calculated as

A fraction F(Ec) of N deuterons below the critical energy Ec satisfying                                                                  

can be calculated as

For Ec= 0.00655 eV corresponding to                           ,            

F (Ec) = 0.084 (8.4% !),  compared to ~10% for the atomic 

BEC case. 37
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