
Concentration Polarization in hydrogen 

permeation through self-supported

Pd-based membranes

Concentration Polarization in hydrogen 

permeation through self-supported

Pd-based membranes

ICCF-15 Conference 2009ICCF-15 Conference 2009

ICCF ICCF –– 15th International Conference on Condensed Matter Nuclear Science, October 515th International Conference on Condensed Matter Nuclear Science, October 5--9, 2009, Rome, Italy9, 2009, Rome, Italy

Giuseppe BARBIERI1, Alessio CARAVELLA1 and Enrico DRIOLI1,2Giuseppe BARBIERI1, Alessio CARAVELLA1 and Enrico DRIOLI1,2

1National Research Council - Institute on Membrane Technology, ITM-CNR,

c/o The University of Calabria, Via P. Bucci - Cubo 17C, 87036 Rende (CS), Italy.

2The University of Calabria - Dept. of Chemical and Materials Engineering, 

Via P. Bucci - Cubo 44A, 87036 Rende (CS), Italy.

1National Research Council - Institute on Membrane Technology, ITM-CNR,

c/o The University of Calabria, Via P. Bucci - Cubo 17C, 87036 Rende (CS), Italy.

2The University of Calabria - Dept. of Chemical and Materials Engineering, 

Via P. Bucci - Cubo 44A, 87036 Rende (CS), Italy.



Presentation TopicsPresentation Topics

� Motivation of the analysis

� Elementary step-based permeation model

� Description and details

� Results and comments

� Motivation of the analysis

� Elementary step-based permeation model

� Description and details

� Results and comments

ICCF ICCF –– 15th International Conference on Condensed Matter Nuclear Science, October 515th International Conference on Condensed Matter Nuclear Science, October 5--9, 2009, Rome, Italy9, 2009, Rome, Italy

� Results and comments

� Concentration polarization analysis

� Definition of the concentration polarization coefficient CPC

� Results and comments

� Overall conclusions

� Results and comments

� Concentration polarization analysis

� Definition of the concentration polarization coefficient CPC

� Results and comments

� Overall conclusions



The Pd-based membranes present 

an infinite selectivity towards 

hydrogen with respect to all the 

other chemical species.

The Pd-based membranes present 

an infinite selectivity towards 

hydrogen with respect to all the 

other chemical species.

Hence, their integration in production 

and purification process could lead 

up to significant advantages with 

respect to traditional equipments.

Hence, their integration in production 

and purification process could lead 

up to significant advantages with 

respect to traditional equipments.

Many empirical models have been Many empirical models have been However, the possibility to use However, the possibility to use 

Motivation of the analysisMotivation of the analysis

ICCF ICCF –– 15th International Conference on Condensed Matter Nuclear Science, October 515th International Conference on Condensed Matter Nuclear Science, October 5--9, 2009, Rome, Italy9, 2009, Rome, Italy

Nevertheless, systematic approaches to model the complex transport 

and kinetic phenomena regarding these membranes, evaluating also the 

concentration polarization influence, are still missing or inadequate.

Nevertheless, systematic approaches to model the complex transport 

and kinetic phenomena regarding these membranes, evaluating also the 

concentration polarization influence, are still missing or inadequate.

Many empirical models have been 

already developed in literature to 

interpret and investigate the

Pd-based membrane behaviour.

Many empirical models have been 

already developed in literature to 

interpret and investigate the

Pd-based membrane behaviour.

However, the possibility to use 

massively these membranes is 

related to a deep knowledge of their 

behaviour in different conditions.

However, the possibility to use 

massively these membranes is 

related to a deep knowledge of their 

behaviour in different conditions.



Description of the permeation modelDescription of the permeation model

b
a

s
e
d

 l
a

y
e

r

h
a

n
is

m
s

 

M
a

th
e

m
a

ti
c

a
l 

d
e

s
c

ri
p

ti
o

n
 

M
a

th
e

m
a

ti
c

a
l 

d
e

s
c

ri
p

ti
o

n
 

Model based on a 

multicomponent approach
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Mathematical details of the modelMathematical details of the model
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A good accordance between model and experimental data is 

found for two supported membranes in several conditions.

A good accordance between model and experimental data is 

found for two supported membranes in several conditions.

[1] Dittmeyer et al., 2001. J. Mol. Cat. A: Chem., 173: 135-184.     [2] Liang and Hughes, 2005. Chem. Eng. J., 112: 81-86.
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Operating conditionsOperating conditions

Side

Pressure, kPa

Reynolds number, -

H2 CH4 CO2 H2O CO N2 Total

Retentate 600 75 50 50 25 75 875
1700 - 800*

4000 - 2500**

1800 - 900*
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Permeate 100 - - 80 - 20 200
1800 - 900*

3000 - 4200**

Temperatures = [300 - 600]ºC

*Laminar flow conditions.    **Turbulent flow conditions.

Multicomponent mixtures have been considered in both retentate and 

permeate side to reproduce a more real situation of separation process.

Multicomponent mixtures have been considered in both retentate and 

permeate side to reproduce a more real situation of separation process.
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The model solution provides the H2 flux value and the transmembrane 

H2 partial pressure profiles as functions of the operating conditions.

The model solution provides the H2 flux value and the transmembrane 

H2 partial pressure profiles as functions of the operating conditions.
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Transmembrane profiles – Turbulent flowTransmembrane profiles – Turbulent flow
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respectively, are expressed in form of equivalent H2 partial pressures.
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Step resistances to flux – Laminar flowStep resistances to flux – Laminar flow
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In laminar conditions, the influence of the external mass transfer can be relevant.In laminar conditions, the influence of the external mass transfer can be relevant.

Tot
P

2H∆

200 300 400 500 600

Temperature, °C

0

20

R
e
la

ti
v
e
 R

Porous Support

Diffusion
Desorption

Film - Permeate

Desorption



Step resistances to flux – Turbulent flowStep resistances to flux – Turbulent flow
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Flux vs. T – Laminar and Turbulent flowFlux vs. T – Laminar and Turbulent flow
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The quantities ππππ Mem and DFBulk
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Concentration polarization analysisConcentration polarization analysis
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Test type Conditions

Pure H2 in both membrane sides
δδδδMembrane = 2.2 µµµµm

T = 400°C

Concentration Polarization Case

(Feed: Binary mixture H2:N2 at 50:50)

Permeate: Sweep of pure N2

PFeed = [3, ..., 26] bar

PPermeate = 1.01 bar

[3] Peters T.A. et al., 2008. J. Mem. Sci., 316: 119-127.
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Polarization analysis - Operating conditionsPolarization analysis - Operating conditions
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Flux and permeance vs. xHFlux and permeance vs. xH2

PMixture = 1000 kPa, PPure = 200 kPa, T = 500°C, Re @ 5200
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Polarization maps – CPC vs. xHPolarization maps – CPC vs. xH2
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Polarization maps – CPC vs. xHPolarization maps – CPC vs. xH2
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The influence of the concentration polarization significantly decreases as high 

membrane thicknesses are considered, because the diffusion in the Pd-based 

bulk progressively tends to become the only rate-determining step.

The influence of the concentration polarization significantly decreases as high 
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Overall ConclusionsOverall Conclusions

� A new model for H2 permeation through supported Pd-based membranes
was developed, accounting for several elementary steps.

� The model predictions were compared with some experimental data, showing a good
agreement with them.

� The rate determining steps were identified as functions of temperature, membrane
thickness and fluid-dynamic conditions.

� The overall permeating flux has been evaluated as a function of the limiting fluxes of all
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� The overall permeating flux has been evaluated as a function of the limiting fluxes of all
the elementary steps considered.

� A systematic analysis was provided for the concentration polarization in
self-supported Pd-based membranes by modifying the original Sieverts' law.

� The effect of the concentration polarization has been evaluated by means of an
appropriately defined Concentration Polarization Coefficient CPC.

� CPC has been calculated as a function of several conditions (temperature, membrane
thickness, feed and permeate pressure, and Reynolds' number) in order to better
predict the hydrogen flux.
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� The effect of the concentration polarization has been evaluated by means of an
appropriately defined Concentration Polarization Coefficient CPC.

� CPC has been calculated as a function of several conditions (temperature, membrane
thickness, feed and permeate pressure, and Reynolds' number) in order to better
predict the hydrogen flux.
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