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(ﬂ Motivation of the analysis

The Pd-based membranes present Hence, their integration in production
an infinite selectivity towards — and purification process could lead
hydrogen with respect to all the up to significant advantages with
other chemical species. respect to traditional equipments.
Many empirical models have been However, the possibility to use
already developed in literature to massively these membranes is
interpret and investigate the L related to a deep knowledge of their
Pd-based membrane behaviour. behaviour in different conditions.

Nevertheless, systematic approaches to model the complex transport
and kinetic phenomena regarding these membranes, evaluating also the
concentration polarization influence, are still missing or inadequate.
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«r I Description of the permeation model
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@©

Mathematical details of the model
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«r I Mathematical details of the model

Permeation Step Flux Equation
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(m I Model validation with data from literature
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A good accordance between model and experimental data is
found for two supported membranes in several conditions.

[1] Dittmeyer et al., 2001. J. Mol. Cat. A: Chem., 173: 135-184. [2] Liang and Hughes, 2005. Chem. Eng. J., 112: 81-86.
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r Operating conditions

Pressure, kPa

Side Reynolds number, -
H, CH, CcoO, H,O co N, Total

1700 - 800*

Retentate 600 75 50 50 25 75 875 4000 - 2500**

1800 - 900*

Permeate 100 - - 80 - 20 200 3000 - 4200**

Temperatures = [300 - 600]°C

*Laminar flow conditions. **Turbulent flow conditions.

Multicomponent mixtures have been considered in both retentate and
permeate side to reproduce a more real situation of separation process.
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ﬂ Transmembrane profiles — Laminar flow
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“- I Transmembrane profiles — Turbulent flow
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The variables 6 and £ on the membrane surface and inside the lattice,
respectively, are expressed in form of equivalent H, partial pressures.
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(r I Step resistances to flux — Laminar flow
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In laminar conditions, the influence of the external mass transfer can be relevant.
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(r I Step resistances to flux — Turbulent flow
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In turbulent conditions, only four steps influences the overall permeation process.
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1[‘ I Flux vs. T — Laminar and Turbulent flow

H, Permeating Flux, mmol m-2 st

10°

10*

10°

10°

Temperature, °C

600 500 400 350 300 250 200
E 1 T T T T T T 3
[ __ Limited by Mass Transfer in Retentate _ _ _ _ ]
I Limited by Mass Transport in Supp o e 1
.\ ‘y
L - \ o, -
C ~~~~~ lefu . \6‘0 3
- - ~~On LLmlted N \€06 ]
- - ~~~~ \ \Oo N
| T T T TS e S - -~ \\G\S‘O \\/(‘@ J
N7 \N@
N \
\ ‘O \

Resulting FIUV

Resulting Flux

1.2 1.4 1.6

1000/T, K

1.8 2

N
N

The overall flux can be
seen as the results of a
complex combination of

all the limiting fluxes
related to the elementary
steps considered.

Depending on the
operating conditions,
the flux tends to follow
the behaviour of the
most influencing step.
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Evaluation of the Concentration
'r I Polarization
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«r I Concentration polarization analysis
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[3] Peters T.A. et al., 2008. J. Mem. Sci., 316: 119-127.
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"— I Polarization analysis - Operating conditions

Molar fraction, -
Side Total pressure, kPa Reynolds number, -
H, CH, Cco, H,O 0, N,
Mixture {0...1} {0.2... 0} for each species {100 ... 1000} 2100 - 8000
Pure H, 1 Absent {100 ... 800} Not influent

Temperatures = [300 - 500]°C
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Flux and permeance vs. x_
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«r I Polarization maps — CPC vs. xy_
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Polarization maps — CPC vs. xy_
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The influence of the concentration polarization significantly decreases as high
membrane thicknesses are considered, because the diffusion in the Pd-based
bulk progressively tends to become the only rate-determining step.
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B Overall Conclusions

0 A new model for H, permeation through supported Pd-based membranes
was developed, accounting for several elementary steps.

v The model predictions were compared with some experimental data, showing a good
agreement with them.

v The rate determining steps were identified as functions of temperature, membrane
thickness and fluid-dynamic conditions.

v" The overall permeating flux has been evaluated as a function of the limiting fluxes of all
the elementary steps considered.

0 A systematic analysis was provided for the concentration polarization in
self-supported Pd-based membranes by modifying the original Sieverts' law.

v' The effect of the concentration polarization has been evaluated by means of an
appropriately defined Concentration Polarization Coefficient CPC.

v CPC has been calculated as a function of several conditions (temperature, membrane
thickness, feed and permeate pressure, and Reynolds' number) in order to better
predict the hydrogen flux.

ICCF - 15th International Conference on Condensed Matter Nuclear Science, October 5-9, 2009, Rome, Italy



Cﬂ ICCF-15 Conference 2009

Thanks for Your
Kind Attention



ICCF - 15th International Conference on Condensed Matter Nuclear Science, October 5-9, 2009, Rome, Italy



