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High Temperature Proton Conductors

HTPCs came in the early 1980s when Iwahara and co-workers
showed that some ceramic perovskite-related oxides presented
proton conduction in hydrogen or vapor containing atmosphere
at high temperatures

The most investigated HTPCs belong to the families of:
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Proton Conduction Mechanism

Why oxygen vacancies?
The proton conduction
AB1.,Os5 mechanism in HTPCs involves

two different steps, they are:
[Oxygen Vacancies o

v' Proton Incorporation

with
x = concentration of dopant v Proton Mobility
d = oxygen vacancies




Mechanism: Proton Incorporation

The most important reaction related to the formation of
protonic defects is the dissociative adsorption of water

H,O— H" + OH"
Proton Idroxyde Ion
Form a covalent bond Fill ﬂ‘? 29 AL
with a lattice oxygen vacancies ( V;’)
T

Using a Kroeger-Vink notation
H,O0+V  +0 —2(OH),

The saturation value of the protons uptake is equal to
twice the initial oxygen vacancy concentration



Mechanism: Proton Mobility

Grotthuss Mechanism - hopping mechanism

= the H-bonded protons form an OH group (OH))

= protons move around 0' and jump to the neighbour 0

X
0

\//

Quantum molecular dynamics (MD) symulations and IR
spectra analysis > possible proton diffusion path.

a.

b.

The proton moves from position 1 to position 2 by
its rotational motion around oxygen atom A.

Upon bending of the Ce-O bond, the proton can
reach position 3, where a hydrogen bond to oxygen
atom B can be formed.

AT this position the proton can move to position 4 if
the energetic barrier for proton transfer is
reduced by shortening the bond length between A
and B.

After a successful transfer, the Ce-O bending
motion eventually breaks the hydrogen bond and
the proton ends up in position 5.




Applications

Proton conductor materials have received many attentions
as promising materials for several applications
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Processing of proton conductors (Y-doped BaCeO,)

Solid state reaction

In general those oxides were synthesized by the conventional solid
state reaction in which the oxide precursors are milled and calcined
at high temperature

L
Several drawbacks - the high sintering temperature creates
inhomogeneities in the chemical composition

Soft chemical processes

- decrease the sintering temperature and
processing time

- good control of morphology and chemical
composition

* high purity and ultrafine powders




Characterization of Y-doped BaCeO;

v' Chemical Composition > XRD analysis
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X-ray diffraction patterns BCY,, powders
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SEM micrographs of BCY o powders

BCY,, powder Agar'@900 C. 6h powder' TM@900 C
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Dilatometric Measurement
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EIS of the BCY,, with Agar method

Pt-paste Simmetrical Cell
Pt - BCY - Pt

Pt-paste Electrode - Electrolyte - Electrode

y

Frequency Response Analyzer

Glass B
sealant

Pt thread




Electrochemical Impedance Spectroscopy (E1S)

EIS is a very versatile tool to characterize intrinsic electrical
properties of any material and its interface

Definition
* impedance (Z) is a general circuit parameter that measure the
ability of a circuit to resist the flow of the electrical current

* is usually measured using small excitation signal

* is represented as a complex number

Z(U))=Z'+jZ" =ZRe +jZIm




EIS - Basics in FC application
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* A frequency response analyzer (FRA) is
used to improve a small amplitude AC signal
to the fuel cell via the load.

* The AC voltage and current response of
the fuel cell is analyzed by the FRA to

determine the impedance of the cell at that
particular frequency.

* Physical and chemical processes occurring
within the cell (such as electron and ion
transport) have different characteristic
time-constants and therefore are exhibited
at different AC frequency

* When conducted over a broad range of
frequencies, impedance spectroscopy can be
used to identify and quantify the impedance
associated with these various processes.




EIS - Basics in FC application

The EIS data are analyzed using equivalent circuit, that are essentially composed by

\/
Defining Relation Impedance
Resistor NW\— V=IxR Z,=R
dv 1 J
Capacitor —”— | =C— Z.=— =—
pac dt c JjoC wC
dl :
Inductor ¥ V= La Z, =joL
\/

* the resistors usually describe the bulk (bulk + grain boundary) resistance of
the material to charge transport such as the resistance of the electrolyte to
ion transport or the resistance of a conductor to electron transport 2 Z,

* capacitors and inductors are associated with space-charge polarization
regions, such as the electrochemical double layer, and adsorption/desorption

processes at an electrode, respectively 2> Z;,




Representation of Impedance Data

EIS data for electrochemical cells are most often represented in
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Conclusions

o HTPCs are promising material for several applications

o With the Agar procedure we are able to synthesized BCY at
lower temperature

o A complete characterization of the material has been
performed

a high purity metal-oxides compounds
o almost fully dense pellet

a very good protonic conduction (10-2 Siemens/m)
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