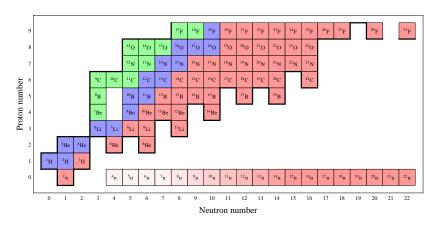

On the production of energy and helium in low energy nuclear reactions

John C. Fisher


Carpinteria, CA

ACS, March 22, 2010

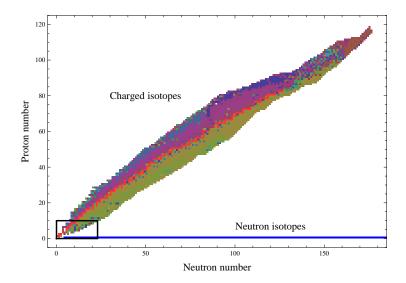

Table of Isotopes (small nuclei)

Table of Isotopes (including hypothetical neutron isotopes)

Full table of isotopes

► From their decay and reaction products

- ► From their decay and reaction products
- ▶ These depend on how strongly isotopes are bound

- ► From their decay and reaction products
- These depend on how strongly isotopes are bound
- ▶ We need a model

▶ Suppose that neutrons in a neutron isotope are bound about 1/2 as strongly as they are in an ordinary charged isotope.

- ▶ Suppose that neutrons in a neutron isotope are bound about 1/2 as strongly as they are in an ordinary charged isotope.
- ▶ The volumetric neutron isotope mass excess then would be

$$\Delta(^{\mathsf{A}}\mathsf{n}) \approx 8.071\mathsf{A} - 7\mathsf{A} \approx \mathsf{A}$$

- ▶ Suppose that neutrons in a neutron isotope are bound about 1/2 as strongly as they are in an ordinary charged isotope.
- ▶ The volumetric neutron isotope mass excess then would be

$$\Delta(^{\mathsf{A}}\mathsf{n}) \approx 8.071\mathsf{A} - 7\mathsf{A} \approx \mathsf{A}$$

▶ We need also a surface energy proportional to $A^{2/3}$.

- ▶ Suppose that neutrons in a neutron isotope are bound about 1/2 as strongly as they are in an ordinary charged isotope.
- ▶ The volumetric neutron isotope mass excess then would be

$$\Delta(^{\mathsf{A}}\mathsf{n}) \approx 8.071\mathsf{A} - 7\mathsf{A} \approx \mathsf{A}$$

- ▶ We need also a surface energy proportional to $A^{2/3}$.
 - Hypothesize: $A^{2/3}$.

- ▶ Suppose that neutrons in a neutron isotope are bound about 1/2 as strongly as they are in an ordinary charged isotope.
- ▶ The volumetric neutron isotope mass excess then would be

$$\Delta(^{\mathsf{A}}\mathsf{n}) \approx 8.071\mathsf{A} - 7\mathsf{A} \approx \mathsf{A}$$

- ▶ We need also a surface energy proportional to $A^{2/3}$.
 - Hypothesize: $A^{2/3}$.
- ▶ Now we have the hypothetical neutron isotope mass excess

$$\Delta(^{\mathsf{A}}\mathsf{n})=\mathsf{A}+\mathsf{A}^{2/3}$$

ightharpoonup 200 n \longrightarrow 196 n + 4 He

- ightharpoonup 200 n \longrightarrow 196 n + 4 He
- ightharpoonup 196 n \longrightarrow 192 n + 4 He

- ightharpoonup 200 n \longrightarrow 196 n + 4 He
- ightharpoonup ¹⁹⁶n \longrightarrow ¹⁹²n + ⁴He
- ightharpoonup ¹⁸⁸n + ⁴He

- ightharpoonup 200 n \longrightarrow 196 n + 4 He
- ightharpoonup ¹⁹⁶n \longrightarrow ¹⁹²n + ⁴He
- ightharpoonup 192 n \longrightarrow 188 n + 4 He
- ► And so on. A neutron isotope decays by emitting a series of energetic alpha particles.

- ightharpoonup 200 n \longrightarrow 196 n + 4 He
- ightharpoonup ¹⁹⁶n \longrightarrow ¹⁹²n + ⁴He
- ightharpoonup 192 n \longrightarrow 188 n + 4 He
- ► And so on. A neutron isotope decays by emitting a series of energetic alpha particles.
- Overall: 200 n $\longrightarrow 50(^{4}$ He)

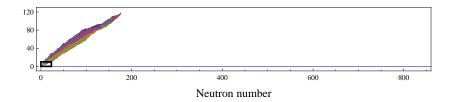
- ightharpoonup 200 n \longrightarrow 196 n + 4 He
- ightharpoonup ¹⁹⁶n \longrightarrow ¹⁹²n + ⁴He
- ightharpoonup ¹⁹²n \longrightarrow ¹⁸⁸n + ⁴He
- ► And so on. A neutron isotope decays by emitting a series of energetic alpha particles.
- Overall: 200 n $\longrightarrow 50(^{4}$ He)
- ▶ We can detect the alpha particles.

Alpha particle shower

Etch pits on a detector chip in air under a nickel cathode (Oriani)

▶ 63 pits

- ▶ 63 pits
- ▶ about 200 alphas in full 4π shower


- ▶ 63 pits
- ▶ about 200 alphas in full 4π shower
- ▶ about 800 neutrons in parent neutron isotope

- ▶ 63 pits
- ▶ about 200 alphas in full 4π shower
- ▶ about 800 neutrons in parent neutron isotope
- Consistent with decay mode

- ▶ 63 pits
- ▶ about 200 alphas in full 4π shower
- ▶ about 800 neutrons in parent neutron isotope
- Consistent with decay mode
- Consistent with large neutron isotopes

- ▶ 63 pits
- ▶ about 200 alphas in full 4π shower
- ▶ about 800 neutrons in parent neutron isotope
- Consistent with decay mode
- Consistent with large neutron isotopes
- Consistent with helium production

Full table of isotopes

$$^2H + \,^An \quad \longrightarrow \,^{A+1}n + \,^1H$$

$$^{2}H + ^{A}n \longrightarrow ^{A+1}n + ^{1}H$$
 $^{2}H + ^{A+1}n \longrightarrow ^{A+2}n + ^{1}H$

$$^{2}H + ^{A}n \longrightarrow ^{A+1}n + ^{1}H$$
 $^{2}H + ^{A+1}n \longrightarrow ^{A+2}n + ^{1}H$
 $^{2}H + ^{A+2}n \longrightarrow ^{A+3}n + ^{1}H$

$$^{2}H + ^{A}n \longrightarrow ^{A+1}n + ^{1}H$$

$$^{2}H + ^{A+1}n \longrightarrow ^{A+2}n + ^{1}H$$

$$^{2}H + ^{A+2}n \longrightarrow ^{A+3}n + ^{1}H$$

$$^{2}H + ^{A+3}n \longrightarrow ^{A+4}n + ^{1}H$$

Neutron isotope detection by growth reactions

Isotope growth (deuterium fuel)

$${}^{2}H + {}^{A}n \longrightarrow {}^{A+1}n + {}^{1}H$$

$${}^{2}H + {}^{A+1}n \longrightarrow {}^{A+2}n + {}^{1}H$$

$${}^{2}H + {}^{A+2}n \longrightarrow {}^{A+3}n + {}^{1}H$$

$${}^{2}H + {}^{A+3}n \longrightarrow {}^{A+4}n + {}^{1}H$$

Neutron isotope growth is accompanied by emission of energetic protons.

Neutron isotope detection by growth reactions

Isotope growth (deuterium fuel)

$$^{2}H + ^{A}n \longrightarrow ^{A+1}n + ^{1}H$$

$$^{2}H + ^{A+1}n \longrightarrow ^{A+2}n + ^{1}H$$

$$^{2}H + ^{A+2}n \longrightarrow ^{A+3}n + ^{1}H$$

$$^{2}H + ^{A+3}n \longrightarrow ^{A+4}n + ^{1}H$$

- Neutron isotope growth is accompanied by emission of energetic protons.
- ▶ Isotope decay also occurs

$$^{A+4}n \longrightarrow ^{A}n + ^{4}He$$

Neutron isotope detection by growth reactions

Isotope growth (deuterium fuel)

$$^{2}H + ^{A}n \longrightarrow ^{A+1}n + ^{1}H$$

$$^{2}H + ^{A+1}n \longrightarrow ^{A+2}n + ^{1}H$$

$$^{2}H + ^{A+2}n \longrightarrow ^{A+3}n + ^{1}H$$

$$^{2}H + ^{A+3}n \longrightarrow ^{A+4}n + ^{1}H$$

- Neutron isotope growth is accompanied by emission of energetic protons.
- ► Isotope decay also occurs

$$^{A+4}n \longrightarrow ^{A}n + ^{4}He$$

Overall (steady state)

$$4(^{2}H) \longrightarrow 4(^{1}H) + {}^{4}He + 20MeV$$

Neutron isotope detection by lithium-6 reactions

Isotope growth

Sotope growth
$$^{6}\text{Li} + ^{A}\text{n} \longrightarrow ^{A+1}\text{n} + ^{5}\text{Li}$$

$$^{6}\text{Li} + ^{A+1}\text{n} \longrightarrow ^{A+2}\text{n} + ^{5}\text{Li}$$

$$^{6}\text{Li} + ^{A+2}\text{n} \longrightarrow ^{A+3}\text{n} + ^{5}\text{Li}$$

$$^{6}\text{Li} + ^{A+3}\text{n} \longrightarrow ^{A+4}\text{n} + ^{5}\text{Li}$$
Isotope decay
$$^{A+4}\text{n} \longrightarrow ^{A}\text{n} + ^{4}\text{He}$$
Overall (steady state)
$$^{4}(^{6}\text{Li}) \longrightarrow ^{4}(^{5}\text{Li}) + ^{4}\text{He}$$

$$\longrightarrow ^{4}(^{1}\text{H}) + 5(^{4}\text{He}) + 14\text{MeV}$$

Neutron isotope detection by lithium-7 reactions

Isotope growth ${}^{7}\text{Li} + {}^{A}\text{n} \longrightarrow {}^{A+2}\text{n} + {}^{5}\text{Li}$ ${}^{7}\text{H} + {}^{A+2}\text{n} \longrightarrow {}^{A+4}\text{n} + {}^{5}\text{Li}$ Isotope decay ${}^{A+4}\text{n} \longrightarrow {}^{A}\text{n} + {}^{4}\text{He}$ Overall (steady state)

$$\begin{array}{c} 2(^{7}\text{Li}) \longrightarrow \ 2(^{5}\text{Li}) + \ ^{4}\text{He} \\ \longrightarrow 2(^{1}\text{H}) + 3(^{4}\text{He}) + 7\text{MeV} \end{array}$$

► Energetic protons and alphas

- Energetic protons and alphas
 - ► Explore basic reactions

- Energetic protons and alphas
 - ► Explore basic reactions
- Helium and heat

- Energetic protons and alphas
 - Explore basic reactions
- Helium and heat
 - Identify and quantify nuclear fuels

- Energetic protons and alphas
 - Explore basic reactions
- Helium and heat
 - Identify and quantify nuclear fuels
- Transmutation (more expensive)

- Energetic protons and alphas
 - Explore basic reactions
- Helium and heat
 - ▶ Identify and quantify nuclear fuels
- ► Transmutation (more expensive)
 - Confirm and extend reaction dynamics

$$^{2}\text{H}:$$
 $4(^{2}\text{H}) \longrightarrow 4(^{1}\text{H}) + {}^{4}\text{He} + 20\text{MeV}$

2
H: $4(^{2}$ H) \longrightarrow $4(^{1}$ H) $+$ 4 He $+$ 20MeV 6 Li: $4(^{6}$ Li) \longrightarrow $4(^{1}$ H) $+$ $5(^{4}$ He) $+$ 14MeV

2
H: $4(^{2}$ H) $\longrightarrow 4(^{1}$ H) + 4 He + 20MeV 6 Li: $4(^{6}$ Li) $\longrightarrow 4(^{1}$ H) + $5(^{4}$ He) + 14 MeV 7 Li: $2(^{7}$ Li) $\longrightarrow 2(^{1}$ H) + $3(^{4}$ He) + 7 MeV

²H:
$$4(^{2}H) \longrightarrow 4(^{1}H) + {}^{4}He + 20MeV$$
⁶Li: $4(^{6}Li) \longrightarrow 4(^{1}H) + 5(^{4}He) + 14MeV$
⁷Li: $2(^{7}Li) \longrightarrow 2(^{1}H) + 3(^{4}He) + 7MeV$
⁹Be: $4(^{9}Be) \longrightarrow 9(^{4}He) + 23MeV$

²H:
$$4(^{2}H) \longrightarrow 4(^{1}H) + {}^{4}He + 20MeV$$
⁶Li: $4(^{6}Li) \longrightarrow 4(^{1}H) + 5(^{4}He) + 14MeV$
⁷Li: $2(^{7}Li) \longrightarrow 2(^{1}H) + 3(^{4}He) + 7MeV$
⁹Be: $4(^{9}Be) \longrightarrow 9(^{4}He) + 23MeV$
¹³C: $4(^{13}C) \longrightarrow 4(^{12}C) + {}^{4}He + 9MeV$

²H:
$$4(^{2}H) \longrightarrow 4(^{1}H) + {}^{4}He + 20MeV$$
⁶Li: $4(^{6}Li) \longrightarrow 4(^{1}H) + 5(^{4}He) + 14MeV$
⁷Li: $2(^{7}Li) \longrightarrow 2(^{1}H) + 3(^{4}He) + 7MeV$
⁹Be: $4(^{9}Be) \longrightarrow 9(^{4}He) + 23MeV$
¹³C: $4(^{13}C) \longrightarrow 4(^{12}C) + {}^{4}He + 9MeV$
¹⁷O: $4(^{17}O) \longrightarrow 4(^{16}O) + {}^{4}He + 12MeV$

$$\begin{array}{lll} ^{2}\text{H:} & 4(^{2}\text{H}) \longrightarrow 4(^{1}\text{H}) + \,^{4}\text{He} + 20\text{MeV} \\ ^{6}\text{Li:} & 4(^{6}\text{Li}) \longrightarrow 4(^{1}\text{H}) + 5(^{4}\text{He}) + 14\text{MeV} \\ ^{7}\text{Li:} & 2(^{7}\text{Li}) \longrightarrow 2(^{1}\text{H}) + 3(^{4}\text{He}) + 7\text{MeV} \\ ^{9}\text{Be:} & 4(^{9}\text{Be}) \longrightarrow 9(^{4}\text{He}) + 23\text{MeV} \\ ^{13}\text{C:} & 4(^{13}\text{C}) \longrightarrow 4(^{12}\text{C}) + \,^{4}\text{He} + 9\text{MeV} \\ ^{17}\text{O:} & 4(^{17}\text{O}) \longrightarrow 4(^{16}\text{O}) + \,^{4}\text{He} + 12\text{MeV} \\ ^{18}\text{O:} & 2(^{18}\text{O}) \longrightarrow 2(^{16}\text{O}) + \,^{4}\text{He} + 5\text{MeV} \\ \end{array}$$

Steady state reactions for selected fuel isotopes

²H:
$$4(^{2}H) \longrightarrow 4(^{1}H) + {}^{4}He + 20MeV$$
⁶Li: $4(^{6}Li) \longrightarrow 4(^{1}H) + 5(^{4}He) + 14MeV$
⁷Li: $2(^{7}Li) \longrightarrow 2(^{1}H) + 3(^{4}He) + 7MeV$
⁹Be: $4(^{9}Be) \longrightarrow 9(^{4}He) + 23MeV$
¹³C: $4(^{13}C) \longrightarrow 4(^{12}C) + {}^{4}He + 9MeV$
¹⁷O: $4(^{17}O) \longrightarrow 4(^{16}O) + {}^{4}He + 12MeV$
¹⁸O: $2(^{18}O) \longrightarrow 2(^{16}O) + {}^{4}He + 5MeV$

²³²Th: Complex, ambiguous, not worked out.

For theoreticians

- ▶ For theoreticians
 - Ordinary nuclear physics with more isotopes

- For theoreticians
 - Ordinary nuclear physics with more isotopes
- For experimenters

- ► For theoreticians
 - Ordinary nuclear physics with more isotopes
- For experimenters
 - Opportunity for fundamental research

- For theoreticians
 - Ordinary nuclear physics with more isotopes
- For experimenters
 - Opportunity for fundamental research
- ► For entrepreneurs

- ► For theoreticians
 - Ordinary nuclear physics with more isotopes
- For experimenters
 - Opportunity for fundamental research
- For entrepreneurs
 - It's risky to ignore lithium and beryllium and other fuels