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INTRODUCTION

Apart from some fragmentary investigations, primarily related to the study of the self-
discharge of batteries, there exists no well defined set of studies in the field of the elec-
trochemical calorimetry. We note that such studies would allow the investigation of the
thermal behavior of a wide range of reactions, especially irreversible processes. Thus,
the establishment of an accurate model of an experiment is very important. However, as
this aspect is not generally understood, we felt it necessary to produce this document.

In spite of its length, this volume only covers the analysis of a data set generated by cal-
culation and one measurement cycle for a “blank experiment.” We believe that it is very
important to produce a detailed analysis and account (as far as is possible at this stage)
of the methodology which we adopted. This is especially important in view of the mis-
leading comments which have been made about the calorimetry of the Pd/D system.
Taken at face value, one must believe that the workers concerned do not understand the
difference between differential and integral coefficients, the disadvantages of differen-
tiating “noisy” data as compared to integrating such data, the differences between the
precision and accuracy of data evaluations, the recognition of “negative” and “positive
feedback,” the analysis of cooling curves, etc. They do not understand relaxation nor
recognize the presence of strange attractors and the way in which the effects of such
complications can be circumvented.1

It is relevant here to reflect on the precision and accuracy of the experiments. Of course,
if the precision is high, then there will be no difficulty in interpreting changes in the
rates of excess enthalpy generation as small as 1 mW at the 10 σ level.2 Of course,

1Of course, it is possible that the researchers concerned do not understand any of these matters, but what
is so remarkable is that they have failed to understand these topics even when they have been described to
them.

2However, the high precision of the instrumentation (relative errors below 0.01%) has been converted into
a 10% error by the group at NHE. It is hard to see how anybody can make such an assertion while still keeping
a straight face. If the errors were as high as this, then it would be impossible to say anything sensible about
calorimetry – for that matter, it would remove one of the main planks of scientific methodology.
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the question of the magnitude of the errors raises three further important questions: (i)
what error limits are required so as to be able to detect excess enthalpy generation at
an adequate level of statistical significance? (ii) what is the difference (if any) between
the experiments carried out with ICARUS systems and ICARUS look-alikes and with
other types of calorimetry? (iii) how can one assess the error limits of a given piece of
instrumentation?

The answer is that one simply stops the development of the methodology when one
is able to make an adequate set of measurements. We note here that this particular
specification is itself dependent on the physical size of the systems being investigated
as well as the chosen operating conditions. In our particular investigation the limit was
certainly reached when the errors had been reduced to the 0.01% level. Naturally, the
first question impacts on the second and we note that it is the use of less precise and
accurate calorimetric methods which has bedeviled so much of the research in this field.
The reason is that with the use of less precise/accurate methods, it becomes impossible
to monitor the build-up of excess enthalpy generation. This then brings us to the third
question and the answer to this is exactly with the methods outlined in this document,
at least as far as isoperibolic calorimetry is concerned (although it is not very difficult
to specify improvements in those methods!).3 It is relevant that although errors had
undoubtedly been made in setting up these experiments, the detailed data analyses had
also shown the way in which such errors could be allowed for.4

To reiterate, we considered it necessary to produce this document for the following
reasons: Firstly, it is always essential to determine the Instrument Function (or of a
parameter or sets of parameters which define the Instrument Function) and to validate
the methods of data analysis. Such validation is best done using simulated/calculated
data. Secondly, one needs to see the extent to which “blank” experiments conform
to expectations. Thirdly, one needs to investigate the ways in which methods of data
analysis may fail.

3The answer to this question brings us to very interesting further lines of enquiry which can be summarized
by the question: “why is it that NHE have never made any sets of raw data for blank experiments available
for further analysis?” If one considers this question in a naive way, then one would say that there can hardly
be any reason for not releasing data sets which do not show any generation of excess enthalpy!

4Instead of seeking to establish the correct way(s) of calibrating the systems, the group at NHE used the
procedure leading to (k

� �
0

R

�
362, probably coupled to timing errors in the calibration pulse which they did not

allow for. Needless to say, this produced nonsensical results which they used as a justification for substituting
an invalid method of data analysis. Moreover, this invalid method of data analysis was applied to just two
experiments, regarded as being typical, although the fact that there were malfunctions in these experiments
has also been pointed out.
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SYMBOLS USED

C – heat capacitance. [J(gMole) � 1K � 1]
Ec � t � – cell voltage at time t. [V]
Eth � b – thermoneutral potential at bath temperature. [V]
F – Faraday constant. [coulombs(gMole)1]
∆H – rate of enthalpy input. [W]
∆Hev – rate of evaporative cooling. [W]
∆Hnet � t � – rate of net enthalpy input at time t. [W]
k – heat transfer coefficient. [WK � 4]
L – latent heat of evaporation. [J(gMole) � 1]
M – number of moles of D2O at t � 0.
P – vapor pressure at the cell temperature. [bar]
P � – atmospheric pressure. [bar]
Q f � t � – rate of generation of excess enthalpy in the cell at time t. [W]
t – time. [s]
α – defined in Eq. (27).
γ – related to time dependence of the � k � coefficient defined in Eq. (20).
λ – defined in Eq. (35).
Λ – defined in Eq. (36).
τ – time. [s]
θ – bath temperature. [K]
∆θ – temperature difference between the cell and the water bath. [K]

3

New
 E

ne
rgy

 Tim
es



4

New
 E

ne
rgy

 Tim
es



SECTION 1: THE EVOLUTION OF THE ICARUS DATA EVALUATION STRATE-
GIES.

We have in the past used a variety of strategies to evaluate the experimentally deter-
mined temperature–time and cell potential–time series. These strategies can be de-
scribed (at least in part) by the heat transfer coefficients which govern the “Black Box”
representing the calorimeters. We will confine attention here to the particular forms of
the heat transfer coefficients which were important for the evolution of the data eval-
uation strategies used with the ICARUS Systems. There is a considerable amount of
material which needs to be considered even if we pose this restriction.

The specification of the ICARUS Data Evaluation Strategies [1] (as modified in part
in [2]) was based mainly on the analysis of temperature–time and input enthalpy–time
series generated by simulations based on the differential equations representing the
models of the calorimeters as well as on the evaluation of suitable “blank experiments”
(principally using Pt cathodes polarized in 0.1 M LiOD/D2O), compare [3–6]). For the
first of these sets of tests, the validity (or otherwise) of the methods used was judged
by the recovery of the parameters used in the simulations at adequately high levels of
statistical significance. These tests have now been reconstructed and are described in
Section 5 where it will be seen that they were sufficient for the specification of the
ICARUS data processing strategies (as well as for the specification of some of the
shortcomings of the various methodologies).

The validity (or otherwise) of the methods defined in the first set of tests was then fur-
ther evaluated by using data for “blank experiments.” This validity was then assessed
principally by investigating the degree of conformity with the predictions based on the
first set of tests as well as by the statistical significance of the methodologies; by de-
termining the degree of correspondence of the “true” and “lower bound” heat transfer
coefficients and, related to this, the observation of a “zero” rate of excess enthalpy gen-
eration [4]; by checking the relationship between the various forms of the heat transfer
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coefficient [3–6]; and by determining whether the experimentally observed relaxations
of the temperature–time series conform to predictions based on simplified models of
the calorimeters [4]. One such set of tests for a “blank” experiment carried out using
an ICARUS-2 system is described in Section 6 (but excluding the test of the relaxation
behavior). The conclusions drawn from tests such as those described in Sections 5 and
6 are summarized in Section 7, where they are compared with the specifications of the
experimental protocols and data evaluation strategies contained in the Handbook for the
ICARUS-1 Systems [1].

It is perhaps not surprising that most of this material has never been published. We
could not imagine that any paper written on this topic would ever be accepted by a
scientific journal and believed that it would be sufficient for us to specify the protocols
and data evaluation strategies to be used with the ICARUS Systems [1]. It is the devi-
ation of the NHE group from the recommended protocols and their use of inaccurate
and/or invalid methods of data evaluation [7] which makes it necessary to reconsider
the background material for the ICARUS-1 systems. Unfortunately, such a reconsid-
eration makes it necessary to give a more closely defined description for some of the
heat transfer coefficients than has hitherto been used. This is contained in Section 2.
We will use the designation � k 	R � i � j � l , where i � 1 
 2 
 3 denotes “differential”, “back-
ward integration” and “forward integration” respectively; j is defined in Section 2 and
l � 1 
 2 denotes “lower bound” and “true” respectively. We had hoped to circumvent
the need for such an extended description so as to avoid overburdening our accounts
with redundant symbolism. Evidently, we were mistaken with our descriptions.

Section 4 describes the method used in the simulations of the data evaluated in Section
5. It will be seen that the first set of tests were incomplete although they were suf-
ficient for the specification of the second set of tests (Section 6) and, in turn, for the
specification of the ICARUS protocols and data processing strategies [1].
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SECTION 2: DEFINITION OF THE HEAT TRANSFER COEFFICIENTS.

It is convenient to consider the form of the cell temperature–time series generated by
the simulation described in Section 3, Fig. 1. As will be shown in that Section, the data
have been generated using Eq. (31) in which the heat transfer from the cell is described
as being pseudo - conductive while the effects of “negative feedback” are taken into
account by writing the input enthalpy as

input enthalpy � � E � λ∆θ � I 
 (1)

where
E � Ec � t � 0 ��� Eth � b (2)

and
∆θ � t �� θ � t ��� θb � (3)

However, in order to prepare the way for the consideration of the “blank experiment”,
Section 5 as well as the later sections, the heat transfer coefficients are defined by
describing the heat transfer as being pseudo-radiative, Eq. (21), giving the “temperature
function”

f1 � θ ���� θb � ∆θ � t ��� 4 � θ4
b � (4)

For the case of the description of heat transfer being pseudo-conductive, we need to
replace the temperature function by ∆θ,

f1 � θ ��� ∆θ � (5)

We can then define a “lower bound heat transfer coefficient” (i.e., a coefficient which
assumes that the rate of excess enthalpy generation is zero) for any part of the measure-
ment cycle, Fig. 1,

� k 	R � 11 � � Ec � t ��� Eth � b � I � ∆Hev � t ��� CpM � d∆θ � dt �
f1 � θ � � (6)
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In our early work we evaluated this coefficient just before the start of the calibration
pulse and designated this particular value as (k 	R � 4 (see [8]), a matter which was evi-
dently not understood [9] although the calculation scheme was set out in Appendix 4
of [8]. The special value of (k 	R � 11 just before the end of the calibration pulse had orig-
inally been designated as (k 	R � 1. (Together with (k 	R � 2 described below, these were the
first two coefficients which we used in the data analysis, hence their designation with
the suffixes 1 and 2). It was our investigation of the “Harwell Data Sets” [10] which
convinced us that the “lower bound heat transfer coefficient” is more useful than just
the two special values (k 	R � 1 and (k 	R � 4 leading to (k 	R � 11 as derived in the “ICARUS
(k � R � 11–spreadsheets,” see Section 6.

Having obtained (k 	R � 11, we frequently wish to establish the 11-point averages (k 	R � 11 so
as to decrease the “noise.” This gives us ca 26 values for measurement cycles lasting
1 day or, better ca 52 values for the recommended 2-day cycles. In turn it is useful

to evaluate the 6-point averages of (k 	R � 11 which we have designated as (k 	R � 11. It is
not useful to extend this averaging beyond 6 points because any such extension makes
the systematic errors (due to the residual decrease of (k 	R � 11 with time) larger than the
random errors, that is, if the systems are behaving sensibly.

It will become apparent that we need accurate values of CpM to make (k 	R � 11 generally
useful but, if we exclude regions where the temperature is varying rapidly with time,
then “guesstimates” of CpM are quite adequate. We note that if we rearrange Eq.(6) to
the straight line form

y � mx � c 
 (7)

i.e., � Ec � t ��� Eth � b � I � ∆Hev � t �
f1 � θ � � CpM � d∆θ � dt �

f1 � θ � � � k 	R � 1 � j � 1 
 (8)

then approximate values of CpM can be obtained from the slopes of the plots derived
for regions where the temperature is varying relatively rapidly with time. We can dis-
tinguish four such plots which we have designated by the relevant derived heat transfer
coefficients: (k 	 � 0R � 151, (k 	 � 0R � 161, (k 	 � 0R � 171 and (k 	 � 0R � 181 according to whether the fitting of
Eq. (8) is carried at at times somewhat above the origin, at times somewhat above t1

(the time of application of the calibration pulse), at times somewhat above t2 (the time
of cessation of the calibration pulse) or by the combination of the last two time regions,
Fig. 1. However, we note that there is a measure of ambiguity about the interpretation
of the values of(k 	R � 1 � j � 1 derived, which will be discussed in Sections 5 and 6.

We note here that separate investigations showed that � d∆θ � t ��� dt � is best estimated by
using the second order central differences (i.e., the chords of the curves) when using
“real” data (i.e., experimental rather than simulated data). More accurate values could
be derived in principle by using higher order differences. However, in practice, the
repeated differentiation of the experimental data leads to an increase in “noise” if we use
differences higher than the second order. This use of the central difference is of some
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importance when we consider the integration processes required for the derivation of
the heat transfer coefficients based on the forward integration of the experimental data
(see below).

We note also that objections have often been raised to the procedures which we have
adopted based on the fact that we have not “binned the data,” i.e., we have not signal
averaged before the data analysis. However, “binning of the data” must always be
approached with great caution: one should only “bin data” or “bin coefficients” if these
data or coefficients can be expected to be constant over the averaging interval. This is
not the case for (k 	R � 11 unless the effects of the term CpM � d∆θ � t ��� dt � have been taken
into account. Once this is done, we can, of course, bin the data as we have done in

deriving (k 	R � 11 and (k 	R � 11.

In the case of the interpretation of data derived with calorimeters relying on radiative
cooling, the position is further complicated by the fact that the differential equation rep-
resenting the calorimeters, Eq. (20), is both nonlinear and inhomogeneous. It does not
follow therefore that coefficients derived by averaging the data are the same as averages
of the coefficients derived by using the raw data. However, we did confirm in 1992
(when this whole saga was first investigated) that we do in fact obtain an equivalence,
provided we restrict attention to regions where (d∆θ � t ��� dt) is adequately small. We
concluded that in such regions the differential Eq. (20) could be sufficiently linearized
and that second order small differences were sufficiently small to allow such averaging.
However, as the values of (k 	R � 11 obtained in this way were identical to those obtained
following the procedure outlined above, there was evidently no justification in pursuing
the matter further (nor to complicate the instrumentation!).

We will refer to the averaging procedures further below when discussing the heat trans-
fer coefficients based on the forward and backward integration procedures. It is next
necessary to evaluate the “true heat transfer coefficients.” The value (k 	R � 2 near the end
of the calibration period is obtained by including the calibration pulse, ∆Q:
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� k 	R � 2 � ∆Q � � Ec � ∆θ2 
 t2 ��� Ec � ∆θ1 
 t1 � I � ∆Hev � ∆θ2 
 t2 � � ∆Hev � ∆θ1 
 t1 �
f2 � θ �

� CpM � � d∆θ � dt � ∆θ2
�
t2
� d � ∆θ � dt � ∆θ1

�
t2
�

f2 � θ � 
 (9)

where we now have

f2 � θ ����� θb � � ∆θ2 � t2 ��� 4 ��� θb � � ∆θ1 � t2 � 4 � (10)

In order to carry out this evaluation, it is useful to construct A4– or A3– sized plots
(European notation); see Sections 5 and 6, and then to obtain appropriate averages using
a transparent ruler. This type of analysis used to be a generally accepted approach but
then fell into disrepute. However, it is now again accepted as giving so-called “robust
estimates.”

We note that the errors in (k 	R � 2 are measures of the accuracy of the “true heat transfer
coefficient” as the estimate is made in terms of the known Joule enthalpy input to the
calibration heater. Errors in (k 	R � 1 or (k 	R � 11 are measures of the precision of the “lower
bound heat transfer coefficients” as there is no independent calibration and there may
be excess enthalpy generation in the system. It is important that (k 	R � 11 and (k 	R � 2 are the
least precise and least accurate coefficients, which can be obtained from the raw data.5

We have always insisted that the construction and evaluation of plots of the raw data
is an essential prerequisite of the more elaborate data evaluation procedures. For one
thing, it shows whether the “noise levels” in the experiments were sufficiently low to
justify more detailed evaluations and also points to malfunctions in the operation of the
experiments. It is very important therefore to establish whether the group at NHE ever
followed this particular instruction and, if they did, what conclusions they may have
drawn from any such plots.

Having obtained the “true heat transfer coefficient” at a single point (usually near the
end of the calibration pulse), it is important to ask: “what is the true heat transfer coef-
ficient (k 	R � 12 at any other time?” We can make such an evaluation within the duration
t1 � t � t2 of the calibration pulse simply by using Eq. (9), giving (k 	R � 12 rather than
(k 	R � 2. Note also that Eq. (9) can be rearranged to the straight line form

5Any statements that the errors are larger than this (as has been made, for example, in the paper from
the group at NHE [7]) simply show that mistakes have been made in the data analysis procedures and/or the
execution of the experiments.
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∆Q � � Ec � ∆θ2 
 t ��� Ec � ∆θ1 
 t ��� I � ∆Hev � ∆θ2 
 t � � ∆Hev � ∆θ1 
 t �
f2 � θ �

� CpM � � d∆θ � dt � ∆θ2
�
t � � d∆θ � dt � ∆θ1

�
t �

f2 � θ � � � k 	 � 0R � 162 
 (11)

which is applicable to times close to and above t1. It is evident, therefore, that such
data derived from the experiments can also be used to obtain estimates of CpM, but the
accuracy of such values is inevitably much lower than of those obtained by the appli-
cation of the corresponding expression for the “lower bound heat transfer coefficient,”
(k 	 � 0R � 161, Eq. (8). Nevertheless, Eq. (11) is useful because it allows the removal of the
effects of the water equivalent on the “true heat transfer coefficient,” (k 	 � 0R � 162, simply
by extrapolating to zero value of the abscissa.

In the regions in which there is no application of the heater pulse, i.e., for 0 � t � t1 and
t2 � t � T , the “true heat transfer coefficient” can only be obtained from the “heating”
and “cooling curves,” i.e., the “driving force” is the change in the enthalpy content of
the calorimeters rather than ∆Q � It is now sensible to cast Eq. (9) in the form

CpM � � d∆θ � dt � ∆θ2 � t � � d∆θ � dt � ∆θ1 � t �
f2 � θ � ��� � k 	 � 0R � 152

� �Ec � ∆θ2 
 t ��� Ec � ∆θ1 
 t ��� I � ∆Hev � ∆θ2 
 t � � ∆Hev � ∆θ1 
 t �
f2 � θ � � (12)

If the system is functioning correctly, then it will be found that the L.H.S. of Eq. (12)
is essentially constant (although this constancy can only be probed over a short time
range). The second term on the R.H.S. of Eq. (12) will be much smaller than the term
on the L.H.S., i.e., it is in the nature of a correction term to give the “point-by-point”
values of (k 	 � 0R � 152 or (k 	 � 0R � 172. It will be evident that the accuracy of these versions of
the “true heat transfer coefficient” is limited by the accuracy of our estimates of CpM.
This particular part of the methodology is therefore only useful to serve as a check on
the operation of the cells and methods of data evaluation.6 The importance of Eqs. (11)
and (12) lies partly in the fact that these equations lead to the interpretation of what we
have classified as Cases 1 and 2 of the phenomenon of “Heat after Death”[3] (and to
other related versions of these Cases).

The assumption underlying this part of the account is that we can only determine (k 	R � 12

within the duration of application of the calibration pulse,
t1 � t � t2, Fig 1, and at lower accuracy, (k 	 � 0R � 152 and (k 	 � 0R � 172, in regions adjacent to the
origin and for times adjacent and above t2. However, this conclusion is incorrect. We

6It is not possible to combine the data in the regions just above t1 and t2 to give a simple equation leading
to (k
� �

0
R

�
182, at least we should say that we have not been able to specify a simple data processing strategy!
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need to make the additional assumption that the rate of any excess enthalpy generation
is constant during any particular calibration period in order to determine (k 	R � 12. This
means that we can only obtain a single value of this heat transfer coefficient per calibra-
tion period and, consequently, a single value of (k 	R � 12 � � k 	R � 11. Two important points
follow from this conclusion. In the first place, the precision of (k 	R � 12 must be very
nearly equal to the precision of (k 	R � 11 (this is discussed further in Section 6). Secondly,
if we extend the assumption that the rate of excess enthalpy generation is constant dur-
ing the period t1 � t � t2 to saying that it is constant during the period 0 � t � T , then it
is immediately possible to derive (k 	R � 12 over the whole of the measurement cycle. The
values obtained can be compared to the special values of (k 	 � 0R � 152 and (k 	 � 0R � 172 in the
relevant time regions.

Having obtained the local (differential) values of the “lower bound” and “true heat
transfer coefficient,” we naturally cast around for methods which would increase their
precision and accuracy. The reason for the limited precision and accuracy is mainly
due to the need to differentiate the noisy experimental data sets. In our early work,
we overcame this particular difficulty by using (k 	R � 4 and (k 	R � 2 as starting values for
the nonlinear regression procedure leading to the heat transfer coefficient (k 	R � 5. Here,
we fitted the numerical integrals of the differential equation governing the behavior
of the calorimeters to the data sets for complete measurements cycles. The relative
errors in (k 	R � 5 which we could achieve in this way were below 0.1%, even when using
the unsatisfactory early version of our calorimeters (i.e., those not silvered in their top
portions).

The use of nonlinear regression procedure had the further distinct advantage that we
could adjust the integration interval in regions where the temperature was varying
rapidly with time so as to achieve the required accuracy in the integrals. This is not pos-
sible for the methods which we will discuss below (and which were part of the ICARUS
data processing strategy) because the intervals for the data acquisition were fixed. As
a matter of fact, the interval 300 s was chosen because such an interval does not degrade
the evaluation of any of the series � k 	R � 21 
 � k 	R � 22 
 � k 	 � 0R � 251 
 � k 	 � 0R � 252 
 � k 	 � 0R � 261 
 � k 	 � 0R � 262 
 � k 	 � 0R � 271,
and (k 	 � 0R � 272. However, it does degrade the evaluation of (k 	R � 31 
 � k 	 � 0R � 351 
 � k 	 � 0R � 361, and
(k 	 � 0R � 371 to some extent, and leads to a marked degradation of (k 	R � 32, � k 	 � 0R � 352, � k 	 � 0R � 362,
and (k 	 � 0R � 372. The fact that the data acquisition interval was too long for straightforward
estimations of the (k 	R � 3 � j � l series of heat transfer coefficients was already pointed out
to NHE in the ICARUS-1 Handbook [1]. These matters will be considered further in
Sections 5 and 6.

We have pointed out on other occasions that the reason we opted for using nonlinear
regression fitting in our early work was because the pressure of events did not allow us
to go through the logical sequence of using linear regression, multilinear regression and
nonlinear regression (in fact, we had to opt for a “catch–all” methodology). However,
as we could not make nonlinear regression “user friendly” with the computing power
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then available to us, so in 1991–92, we investigated the application of linear regression,
which became part and parcel of the ICARUS-1 methodology.7

Attention has been drawn to some of these details because it would certainly be possible
to reimplement parts of these projects provided one could gain access to the data sets.
If one wishes to avoid the numerical differentiation of the experimental data sets, then
one can rely instead on the numerical integrations of these data and compare these to
the integrals of the differential equation representing the model of the calorimeters. For
the backward integrals starting from the end of the measurement cycles at t � T , we
obtain � k 	R � 21 � � t

T ∆Hnet � τ � dτ� t
T f1 � θ � dτ

� CpM � ∆θ � t ��� ∆θ � T ���� t
T f1 � θ � dτ

(13)

while the corresponding equation for forward integration from the start of the measure-
ment cycle is � k 	R � 32 � � t

0 ∆Hnet � τ � dτ� t
0 f1 � θ � dτ

� CpM � ∆θ � t ��� ∆θ � 0 ���� t
0 f1 � θ � dτ � (14)

Here, the suffices 21 and 31 denote respectively “backward integration, lower bound”
and “forward integration, lower bound.” (k 	R � 21 and (k 	R � 31 are the corresponding integral
heat transfer coefficients defined at the time t.

We note here that care is needed when integrating the term [net enthalpy input, ∆Hnet � τ)]
around the discontinuities at t � t1 and t � t2. This is a matter which will be considered
further in Sections 5 and 6. In our work we have at various times used the trapezium
rule, Simpson’s rule, or the mid-point rule to carry out the integrations. Of these rules,
only the mid-point rule is strictly speaking correct in that it agrees with the mathemat-
ical definition of an integral. It is quite generally assumed that integrations carried out
using the trapezium or Simpson’s rule will converge onto the “correct” algebraic result
if the integration interval is made adequately small, but this does not necessarily follow.
It is a matter which needs to be investigated for each particular case.

The merits of the particular integration procedures coupled to the adequacy of the cho-
sen integration interval is revealed more clearly when we come to the use of Eqs. (13)
and (14) to determine CpM and to carry out extrapolations to remove the effects of the

7While dealing with these “historical aspects,” we note also that in 1990-92 we investigated the use of
Kalman filtering (leading to an heat transfer coefficient labelled as (k

�
R

�
6 and we also investigated the use of

other filtering methods. Some of this was rather promising especially that designed to extract information
about “positive feedback,” but these projects had to be abandoned. As part of these projects we also inves-
tigated the use of averaging techniques other than the “square-box” version, which gives (k

�
R

�
11 from k

�
R

�
11

and (k
�
R

�
11 from (k

�
R

�
11. These projects were also promising, but again had to be abandoned. Finally, in 1994,

the change of the ICARUS systems to hardware based switching was investigated with a view to allowing
changes in the data acquisition intervals (thereby putting the (k

�
R

�
3
�
j
�
l strategies on a sounder basis). However,

these switching systems were not incorporated in the ICARUS–2 systems.
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second term on the R.H.S. of Eqs. (13) and (14) on the corresponding heat transfer
coefficients. We will follow here the procedure laid down in the ICARUS-1 Hand-
book [1] where the integrations were restricted to the region of application of the heater
calibration pulse. For backward integration, we obtain� t

t2
∆Hnet � τ � dτ� t
t2

f1 � θ � dτ
� CpM � ∆θ � t ��� ∆θ � t2 ���� t

t2
f1 � θ � dτ � � k 	 � 0R � 261 (15)

while for the forward integration we have� t
t1

∆Hnet � τ � dτ� t
t1

f1 � θ � dτ
� CpM � ∆θ � t ��� ∆θ � t2 �� t

t1
f1 � θ � dτ � � k 	 � 0R � 361 � (16)

It will be seen in Sections 5 and 6 (more especially in Section 6) that Eq. (15) can
be used to derive accurate values of CpM while there is some minor degradation when
using the forward integration, Eq. (16). The application of Eq. (15) to the data sets
was the “target methodology” of the ICARUS systems and the derived “lower bound
heat transfer coefficient,” (k 	 � 0R � 261 was described as (k 	R � 21 in the Handbook [1] and
the associated correspondence. The same types of equation may be used to derive
(k 	 � 0R � 251 
 � k 	 � 0R � 271, and (k 	 � 0R � 281 as well as (k 	 � 0R � 351 
 � k 	 � 0R � 371, and (k 	 � 0R � 381; it is only
necessary to start the interpretation from the appropriate times, which also give the
starting values of θ for the R.H.S. of the relevant equations. Of these sets of estimates,
that leading to (k 	 � 0R � 281 is especially useful and this particular fit also gives a good
estimate of CpM.

In order to obtain the “true heat transfer coefficients” it is necessary to combine the inte-
grals of the enthalpy inputs in Eqs. (15) and (16) with thermal balances made at one or
a series of points.8 We will confine attention here to the procedure originally suggested
in the Handbook for the ICARUS-1 system[1]. We make a thermal balance just before
the application of the calibration pulse and, if the system has relaxed adequately and, if
dθ � dt � 0, then if we consider (k 	R � 32,

0 ��� ∆Hnet � t1 ����� t � t1 � � Q f � t � t1 ��� � k 	R � 32 � � θb � ∆θ � t1 ��� 4 � θ4
b ��� t � t1 � (17)

Combination with Eq. (14) eliminates the unknown rate of excess enthalpy generation,
Q f . We obtain

� k 	R � 32 � � t
t1

∆Hnet � τ � dτ � �∆Hnet � t1 ����� t � t1 �� t
t1

f2 � θ � dτ
� CpM � ∆θ � t ��� ∆θ � t1 ���� t

t1
f2 � θ � dτ � (18)

8This can be done in a number of ways and it is important that this part of the evaluation was changed
during the summer of 1994 following the receipt of the first two sets of data collected by NHE.

14

New
 E

ne
rgy

 Tim
es



The corresponding equation for (k 	R � 22 follows from Eq. (18) on replacing t1 by t2.9

The corresponding equation for (k 	R � 22, based on the backward integration of the data
sets, follows from Eq. (18) on replacing t1 by t2. It is also convenient to rewrite the
derived equation in the straight line form:� t

t2
∆Hnet � τ � dτ � � ∆Hnet � t2 ����� t � t2 �� t

t2
f2 � θ � dτ

� CpM � ∆θ � t ��� ∆θ � t2 ���� t
t2

f2 � θ � dτ � � k 	 � 0R � 262 � (19)

(k 	 � 0R � 262 was the version of (k 	R � 22, which we used in our investigations prior to the
construction of the ICARUS-1 system. As we did not want to discuss the differences
between these two versions, we also labelled (k 	 � 0R � 262 with the suffices 22. It should be
noted that Eq. (19) is soundly based (in a mathematical sense) in that the extrapolation
to �∆θ � t �!� ∆θ � t2 ���"� 0 gives the value of (k 	 � 0R � 262 at a well defined time, t � t2. This ex-
trapolation automatically removes the effect of the term CpM � � θ � t �#� θ � t2 ���$� � t

t2
f2 � θ � dτ

on the heat transfer coefficient. This was one objective for our methodology because
CpM is the, least accurate parameter in the analysis; the application of Eq. (19) to
the data sets was the “target methodology” for evaluating the “true heat transfer coeffi-
cients.”

While it is also possible to write Eq. (18) in the form (19) to give (k 	 � 0R � 362, this method
of analysis is not useful as the range of the extrapolation required is too long as will
be shown in Sections 5 and 6. For this reason we recommended in the Handbook [1]
that (k 	R � 32 be evaluated at times close to t � t2 using Eq. (18). However, in view of the
errors in the determination of CpM, these values of (k 	R � 32 are inevitably less accurate

than those of (k 	 � 0R � 262.

We note here also that one must be somewhat careful in carrying out the required linear
regression fitting procedures, a matter which is considered further in Sections 5 and 6.

9We note that NHE did not follow the instruction in the ICARUS-1 Handbook [1] to use 2-day measure-
ment cycles and, for the reduced time scales of 1-day cycles in particular, it is necessary to include the term
CpM % d∆θ & dt

�
in the thermal balances, Eq. (17). However, NHE continued to use the original form of the

equation. They also did not follow the instruction to evaluate (k
�
R

�
32 at times close to t2.
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SECTION 3: DIFFERENTIAL EQUATIONS GOVERNING THE BEHAVIOR
OF THE CALORIMETERS: SIMULATIONS OF THE TEMPERATURE–TIME
SERIES.

It has been established that at low to intermediate cell temperatures (say, 30 � θ �
800C � the behavior of the calorimeters is modelled adequately by the differential equa-
tion

CpM � d∆θ � dt �'��� Ec � t ��� Eth � b � I � Q f � t � � �∆QH � t � t1 ��� ∆QH � t � t2 ���� � 3I � 4F �#� � P � P � � P ����( � Cp �D2O � g � Cp �D2O � l � ∆θ � L )� � k0
R � θ3

b � 1 � γt � ( f1 � θ ��� θ3
b � 4φ∆θ ) � (20)

With the calorimeters used in the ICARUS-type investigations, the conductive contribu-
tion to heat transfer is small. We have therefore assumed that this term can be “lumped”
into the radiative term by allowing a small increase in the radiative heat transfer coeffi-
cient:

radiative heat transfer � � k 	 � 0R �#� 1 � γt �#( � θb � ∆θ � 4 � θ4
b ) � (21)

If the time dependence of the heat transfer coefficient is not included explicitly in this
equation, then

radiative heat transfer � � k 	R �*� � θb � ∆θ � 4 � θb � 4 ��
 (22)

where the radiative heat transfer coefficient (k 	R � now shows a weak time dependence.

In calculating the rate of enthalpy removal by the gas stream,

� 3I � 4F �+� P � � P � � P ����� � Cp �D2O � g � Cp �D2O � l � ∆θ � L ��
 (23)

we have always assumed that the partial pressure of D2O (or H2O) in this gas stream can
be calculated using the Clausius-Clapeyron equation with the latent heat of evaporation,
L, being that at the boiling point. Evaporative cooling only becomes a major term at

16

New
 E

ne
rgy

 Tim
es



temperatures close to the boiling point (say, at ∆θ , 700C) where these two assumptions
are justified. At low to intermediate temperatures, ∆Hev � t � is a minor correction term
so that errors due to the two assumptions introduce second order small quantities (for a
further approximation, see below).

In carrying out simulations to be analyzed by the methods outlined in Section 2, we
have further usually assumed that the rate of excess enthalpy generation is zero,

Q f � t ��� 0 
 (24)

and that the radiative heat transfer term can be linearized: rate of heat transfer,

4 � k 	R � θ3
b∆θ � � k 	c � ∆θ 
 (25)

i.e., that the heat transfer is now pseudo-conductive. This is an assumption which we
also used (with several restrictions) in our original investigation [8]. We note here that
the heat transfer coefficients for the Dewar cells used at that time were up to twice those
which are calculated from the Stefan-Boltzmann coefficient and the radiative surface
area so that we had to assume that the conductive contribution was appreciable. We at-
tributed this conductive contribution to conduction across the nominal vacuum gap due
to inadequate evacuation/baking of the Dewars. It was therefore not clear whether the
heat transfer term should be described as being pseudo-radiative or pseudo-conductive
and the experiments had to be carried out in such a way that the errors due to the lim-
iting assumptions were below those of the experiment. In our later work (including
that carried out with the ICARUS systems), we ensured that the vacuum in the Dewars
was sufficiently hard so that the radiative heat transfer coefficient was now given by the
product of the Stefan-Boltzmann coefficient and the radiative surface area. However,
it is evident that the vacuum in some of the cells used in the NHE investigations had
become rather soft.

The correct description of heat transfer from the cell is a matter which requires further
investigation. While the limiting assumptions introduce small errors, we can ensure that
these errors are less than those due to the experiment. It is therefore better to use these
assumptions rather than to attempt to separate this term into the radiative and conductive
contributions. However, a better approach might well be that we should calculate the
radiative term and then derive the conductive contribution from the calibrations [3].
This would ensure that we do not introduce an additional parameter into the modeling
of the cells. It should be noted that such a methodology would automatically ensure
the linearization of Eq. (20). In carrying out such modified procedures, we should
weight the radiative contribution appropriately (say 95% of the total) rather than using
the 50:50 split of the original analysis [3].

The use of the descriptions and assumptions outlined above gives us the differential
equation

CpM0 � d∆θ � dt �'��� Ec � t ��� Eth � b � I � Q f � t � � ∆QH � t � t1 ��� ∆QH � t � t2 �*�
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∆Hev � t ��� � k 	 � 0R �+� 1 � γt ��� � θb � ∆θ � 4 � θ4
b � � (26)

In order to calculate the ∆θ � t series we have to deal with a further difficulty in that the
function Ec � t � is unknown. However, it is evident from the experimental ∆θ � t ��� t and
Ec � t ��� t series that we can always observe “negative feedback,” i.e., that Ec decreases
with ∆θ. If we assume that this is the only cause of the variation of Ec with t, then

Ec � t �'� Ec � 0 ��� α � ∆θ � ∆θ0 �'� E 	c � α∆θ (27)

(i.e., we neglect any variation of the activation overpotentials with time) and

CpM � d∆θ � dt ��-� E 	c � Eth � b � α∆θ � I � Q f � t � � � ∆QH � t � t1 ��� ∆QH � t � t2 ���
� ∆Hev � t ��� � k 	 � 0R � � 1 � γt �+� � θb � ∆θb � 4 � θ4

b � � (28)

It was not clear during 1991-92 whether we should change our data processing strat-
egy to that later incorporated into the ICARUS systems or whether we should continue
to use nonlinear regression fitting. At that time, we therefore investigated further the
possibility of obtaining an analytic solution of Eq. (27) so as to speed up the latter
procedure. Such a solution was derived and it was shown that the numerical integra-
tion of Eq. (28) agreed with this solution to better than 0.1%, the target figure for our
data analyses (these solutions required the assumption Q f � t �.� constant, which is in
any event necessary so as to achieve calibrations of the systems). We believe that the
residual discrepancy is due to deficiencies in the numerical techniques, i.e., that the
analytic solutions are exact. This program of work was discontinued when it became
clear that satisfactory data analysis could be achieved by using linear regression proce-
dures. However, it may well be that this particular aspect of the data analysis procedures
should be restarted if we wish to develop a general investigation of existing data sets.

At that time, we also investigated the application of various data evaluation procedures
to simulated data sets. Attention was confined to linearized versions of Eq. (28) with
the additional assumptions,

Q f � t �'� 0 (29)

∆Hev � t �'� 0 
 (30)

giving the equation,
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CpM � d∆θ � dt �'� E 	cI � � ∆QH � t � t1 ��� ∆QH � t � t2 ���
� � k 	 � 0c �+� 1 � γt � ∆θ � αI∆θ � (31)

With the additional assumption that the pseudo-conductive heat transfer coefficient is
independent of time we have

CpM � d∆θ � dt �'� E 	cI � � ∆QH � t � t1 ��� ∆QH � t � t2 ����� � k 	 � 0c � αI � ∆θ � (32)

Parts of these investigations have now been repeated. The integrations of (32) follow
immediately. For the initial condition

∆θ � ∆θi 
 t � 0 
 (33)

we obtain
∆θ � ∆θie � λt � Λ1 � 1 � e � λt � (34)

where
λ � � k 	 � 0c � αI ��� CpM (35)

and
Λ1 � E 	c � � k 	 � 0c � αI � (36)

i.e., in the region 0 � t � t1. We assume

CpM0 � 330JK � 1 (37)

k 	 � 0c � 0 � 073WK � 1 (38)

γI � 0 � 007WK � 1 (39)

∆θi � 11 � 750C (40)

E 	 I � γI∆θi � 1W � (41)

With the exception of the rather low value of ∆θi, these parameters are close to those
which we would derive for the blank experiment discussed in Section 6. The reason
why ∆θi has been set artificially low is so as to allow an examination of the region close
to t � 0. With (36) through (40), we obtain from Eq. (34)

∆θ � 13 � 528125 � 1 � 778125e / � 0 0 000 1 24 0 2 t 3 (42)

while the enthalpy input is given by

input enthalpy � 0 � 987553 � 0 � 012447exp �4� 0 � 000 � 24 � � t � � (43)
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Here (24.) denotes the recurrence of the number group 24.

We next use (41) to give the value of ∆θ1 at t � t1 � 43,200s

∆θ1 � 13 � 5280750C at t � 43 
 200s � (44)

This value is adequately close to 13.5281250C, which applies to complete thermal re-
laxation. We use this value together with

∆Q � 0 � 2W 
 t1 � t � t2 (45)

for the next step of the integration. With

Λ2 � � E 	cI � ∆Q ��� � k 	 � 0c � αI � (46)

∆θ � ∆θ1e � λ 1 t � t1 2 � Λ2 � 1 � e � λ 1 t � t1 2 �� 16 � 028125 � 2 � 500050e / � 0 0 000 1 24 0 251 t � t1 263 � (47)

and
input enthalpy � 0 � 970053 � 0 � 017500e / � 0 0 000 1 24 0 271 t � t1 263 (48)

Equation (47) can be used in turn to derive

∆θ2 � 16 � 0280490C at � t2 � t1 �'� 42 
 900s 
 (49)

which is used as the initial value for the final step in the integration. We obtain

∆θ � ∆θ2e � λ 1 t � t2 2 � Λ1 � 1 � e � λ 1 t � t2 2 �� 13 � 528125 � 2 � 499924e / � 0 � 000 1 24 0 271 t � t2 263 (50)

and
input enthalpy � 0 � 987553 � 0 � 017499e / � 0 0 000 1 24 0 271 t � t2 263 � (51)

The “raw data” calculated using Eqs. (42), (43), (47), (48), (50), and (51) are given in
the ICARUS (k 	 � 0c � 11 spreadsheet, spreadsheet 1. These data are analyzed in Section 5
using the methodologies outlined in Section 3. It will be seen that simulations of this
kind are adequate for demonstrating the advantages and shortcomings of the various
possible methods. It will also be clear that such simulations are deficient in several
important respects. In the first place the residual time dependence of the heat transfer
coefficient has not been taken into account. However, it was confirmed in 1992 that
a data set generated with approximate solutions which include this effect does indeed
generate the key features observed when using “real experimental data,” see Section 6.
We note here that data sets have never yet been generated using the full analytic solution
described above. Secondly, the effects of “noise” having defined characteristics (i.e.,
defined power spectral densities as well as the effects of quantization of the measure-
ments) on the methods of data evaluation has never yet been investigated. Instead, we
have relied on a comparison of the analysis of simulated data, Section 5, with those for
“blank” experiments, Section 6. If the question of the effects of “noise” ever becomes
an important issue, then we would suggest that the “noise” characteristics of Ec � t � and
∆θ � t � be first determined and that data be then generated using the full analytic solution
with addition of the correct “noise” characteristics.
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SECTION 4: SPECIFICATION OF THE ICARUS–1 EXPERIMENTAL PRO-
TOCOLS AND DATA EVALUATION PROCEDURES.

Before dealing with the analysis of the simulated data, Section 5, and the analysis of
data for a “blank” experiment, Section 6, we will outline the experimental protocols
and data evaluation strategies specified for experiments with the ICARUS systems. The
key elements were as follows:

(i) the measurement cycles should be lengthened to 48 hours. Following the replen-
ishment of the D2O (or H2O) in the cells to make up for losses due to electrolysis, the
relaxation of the systems was to be followed for 12 hours followed by the application
of a Joule heating pulse for a further 12 hours (when this calibration was required) in
turn followed by a final relaxation for a further 24-hour period.

(ii) the protocols were to be:
(a) two measurement cycles without calibration pulses;
(b) ten measurement cycles with calibration pulses;
(c) two measurement cycles without calibration pulses;
(d) ten measurement cycles with calibration pulses.

It will be seen that a total experiment duration of 48 days was specified;

(iii) several “blank experiments” were to be carried out (at least one for each cell in use;
the use of Pt cathodes in 0.1M LiOD/D2O was recommended). The protocol (ii) was to
be followed.

(iv) the execution of the “blank experiments” was to be followed by experiments using
cathodes made of Johnson Matthey Material Type A. The protocol (ii) was again to be
followed;
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(v) the first step in the data evaluation was to be the plotting of A3- or A4- sized graphs
of the raw data. The heat transfer coefficients (k 	R � 1 and (k 	R � 2 were to be derived for
each measurement cycle.

(vi) the next step was to be the construction of (k 	R � 11–type spreadsheets coupled to the

determination and interpretation of (k 	R � 11, (k 	R � 11 and (k 	R � 11. The further evaluation of
these spreadsheets was not specified in 1993; this was a matter which was to be decided
by a collaborative program between NHE and IMRA Europe.

(vii) after the execution of (vi), the (k 	R � 21-type spreadsheets were to be prepared and
values of (k 	 � 0R � 261 and (k 	 � 0R � 361 and the associated values of CpM were to be determined.
These values of CpM were to be used both to correct the evaluations in (vi) and to
determine the “true” heat transfer coefficients (k 	R � 32 at times close to the end of the
calibration period, t � t2;

(viii) it was envisaged that, following the completion of this initial stage of the investi-
gation, the ICARUS program would move on to the examination of materials variables
as well as the production of ICARUS-2. This second part was intended to deal with the
effects of increasing the current density, the analysis of data close to the boiling point
(including the boiling episodes), and “Heat after Death.”

After the receipt of the data for the first set of experiments carried out in the NHE Lab-
oratories, it became apparent that there were timing errors in the ICARUS-1 system
installed in Sapporo [1]. The most self–evident error was in the timing of the applica-
tion and cessation of the calibration pulses (t1 and t2), which degraded somewhat the
estimation of (k 	R � 31 and caused a serious degradation of the evaluation of (k 	R � 32. The
estimations of (k 	R � 21 and (k 	R � 22 were not affected by these errors (as had been the case
for the experiments carried out prior to the construction of the ICARUS-1 system). It
was therefore recommended [16] that (vii) be modified and that the “true heat trans-
fer coefficient” be estimated using (k 	R � 22 evaluated at times close to t1 and by (k 	 � 0R � 262

(rather than by (k 	R � 32 estimated at times close to t2 as recommended in the Handbook
for the ICARUS-1 system [1]).

This set of objectives and instructions will be reconsidered in Section 7 in the light of
the evaluation of the simulated data, Section 5, and of a “blank” experiment, Section 6.
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SECTION 5: EVALUATION OF THE “RAW DATA” GENERATED USING THE
SIMULATION DESCRIBED IN SECTION 4.

(a) We start by plotting the “raw data” generated by the simulation Eqs. (42), (43),
(47), (48), (50), and (51) described in Section 3; see the ICARUS (k 	c � 11-spreadsheet,
spreadsheet 1. The plots of the temperature–time and input enthalpy–time series are
shown in Fig. 2 (the data are the same as in Fig. 1). We evaluate (k 	c � 1 and (k 	c � 2 using
the graphical method and obtain

� k 	c � 1 � 0 � 07294WK � 1 (52)

� k 	c � 2 � 0 � 07280WK � 1 � (53)

It should be noted that the scale of the y-axis in Fig. 2 is markedly reduced compared
to that used in the evaluation of experimental data, e.g., Fig. 38. The reasons for this
are the rather low value of ∆θi used in the simulation (Eq. (39)) which increases the
excursion of the temperature–time series coupled to use of landscape rather than portrait
format so as to allow the presentation of the whole of the measurement cycle. In view of
this compressed scale, the accuracies of (k 	c � 1 and (k 	c � 2 are somewhat reduced compared
to those normally achieved. This effect is to some extent counteracted by the absence
of “noise” in the simulated data.

At this stage, we have also always prepared a diagram on a much larger scale of the
regions straddling the times t1 and t2 such as that shown in Fig. 3. There are several
reasons for preparing such diagrams. First of all, when dealing with experimental data
collected with the ICARUS systems (and their precursors), it is important to determine
the exact times of application and cessation of the calibration pulses. It was the prepa-
ration of such diagrams which showed that there were timing errors in the ICARUS-1
system which could be easily allowed for by deriving the exact values of t1 and t2. As
has already been stated on other occasions there was no point in changing the hardware
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to correct for these effects as the times of data acquisition were known with sufficient
accuracy.

Of course, when dealing with the simulated data, t1 and t2 are known exactly and
these times should also be known accurately for experimental data collected with the
ICARUS-2 system. However, we believe that this assumption/prediction will turn out
to be incorrect!

The second reason for investigating the temperature–time series in these time regions
is to define the time series required for the integrations of the input enthalpy to be used
in the (k 	R � 21–spreadsheets. This definition is in turn dependent on the methods to be
used for the numerical integrations. Here, we will assume here that we have decided to
use the trapezium or sum rules for the integrations (these methods are related because
the values given by the trapezium rule are those derived by the sum rule less one half
the terms at the extremes of the range multiplied by the integration interval). For these
rules, we need to insert an additional point into the experimental data at t1 and t2 if
these times correspond to the data acquisition intervals. If t1 and t2 do not correspond
to these intervals, we need to insert two additional points at each of t1 and t2.

We note here that the trapezium and sum rules can be used in a straightforward way to
integrate around the discontinuities at t1 and t2. The mid-point and Simpson’s rule can-
not be used in this way: in particular, it is necessary to use much more complicated pro-
cedures if we wish to use the mathematically exact central difference methods. For this
reason, we have always relied on the trapezium or sum rules except if the integrations
are confined to regions
0 � t � t1, t1 � t � t2 or t2 � t � T .10

(b) The next step is to carry out a detailed examination of the (k 	c � 11– spreadsheet,
spreadsheet 1 and this examination itself falls into several parts. We first of all plot the
lower bound heat transfer coefficient, (k 	c � 11, against time (here given by the measure-
ment interval) where we use the assumed value of CpM, Fig. 4. Of course, for the case
of the interpretation of the simulated data, we know the value of CpM used in the simu-
lation. The deviation of (k 	c � 11 from the value 0.073000 WK � 1 used in the simulation is
therefore an indication of the errors in d∆θ � dt produced by using the second order cen-
tral difference when using a 300 s measurement interval. We can see that we can obtain
reasonable values of (k 	c � 11 provided we exclude, say, the first six hours following any

10We believe that these integrations have been carried out incorrectly by the ICARUS-2 software. It would
be important to check this particular point if we can reimplement the software. The reason is not only
that incorrect integrations will lead to incorrect values of the “true heat transfer coefficient,” a matter which
will be illustrated below, but also that we will calculate an incorrect value of the excess enthalpy for each
measurement cycle even if we should have a correct value for the heat transfer coefficient! If we cannot
reimplement the software, then we will be able to make some sort of overall check of the ICARUS-2 software
by carrying out correct and detailed checks of the measurement cycles for which NHE have given values of
the “true heat transfer coefficient” evaluated by their methodology. This should automatically reveal the
method(s) they actually used to arrive at their conclusions.
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change in the operating conditions of the cells.

Of course, in the case of the evaluation of spreadsheets derived for experimental mea-
surements, our first evaluation will be based on a “guesstimate” of CpM. It will there-
fore be necessary to amend the spreadsheet once an accurate value of CpM has been
derived.11 It is important that under such conditions the further average (k 	c � 11 can-

not be derived and (k 	c � 11 is quite meaningless. It is therefore impossible to carry out
these important averaging methods which reduce the effects of random errors. These
difficulties could have been avoided if the experiments had been carried out using the
stipulated 48-hour measurement cycles.

We note that the error of 0.04% in the “lower bound heat transfer coefficient” is above
that which was specified for the ICARUS-1 system (0.01%). An alternative approach
to removing the errors due to incorrect estimates of CpM is to use the evaluations of
(k 	 � 0c � 151, � k 	 � 0c � 161, k 	 � 0c � 171, and � k 	 � 0c � 181, Figs. 5 through 8. These extrapolations au-
tomatically give us values of CpM and the relevant values of the “lower bound heat
transfer coefficients” are shown on Fig. 4.

This particular approach was de-emphasized in setting up the ICARUS-1 system be-
cause the extrapolations in Figs. 5 trough 8 are to a point where d∆θ � dt � 0. While
this condition is satisfied for the simulations, it will not be observed for experiments
carried out with a 24-hour measurement cycle. If a 48-hour cycle is used, then there
will be two times at which this condition will hold (one within the period 0 � t � t1,
and one within t1 � t � t2; see Section 6). However, it has never been established that
the plots in Figs. 5, 6 and 8 extrapolate to these points. This is a matter which should
be investigated using data generated by more elaborate simulations.

(c) The next step is to investigate the “true heat transfer coefficient”, (k 	c � 12. In the
region t1 � t � t2, we can apply Eq. (9) at any chosen point. This is straightforward
for the data derived by simulation because the thermal balance in the absence of the
calibration pulse is known exactly. For experimental data, the relevant values can be
obtained from the plots of the temperature–time and cell potential–time series such as
those shown in Fig. 38, Section 6. Figure 9 gives the relevant values using the data on
the (k 	c � 11-spreadsheet, spreadsheet 1. The deviations from the known value ((k 	c � 12 =
0.073000 WK � 1) shown in Fig. 9 as well as the component parts of this heat transfer
coefficient (the ordinates and abscissae shown in spreadsheet 1) show that the effects
of errors in the estimates of (d∆θ � dt � are now more serious than is the case for the
calculation of (k 	c � 11. This is to be expected mainly in view of the relative magnitudes
of f1 � θ � and f2 � θ � , Eqs. (9) and (10). However, we can see from spreadsheet 2 that
we would be able to derive values of (k 	c � 12 accurate to 0.01% if measurement cycles

11The little which we have seen of the NHE evaluations leads us to think that this further step was never
carried out. If this is correct, then the values of CpM used would have been in error by between 10 and 20%.
This error would in turn have produced an error of – 0.04% in the “lower bound heat transfer coefficients”
under the most favorable conditions of estimating this coefficient at the end of the relevant 6-hour periods.
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lasting 48 hours were used. It is possible to apply averaging procedures leading to (k 	c � 12

and (k 	c � 12 for the last 6 hours of calibration periods lasting 12 hours, thereby, markedly
reducing the effects of “noise” in the experimental temperature– and cell potential–time
series. The benefits of this type of averaging are, indeed, foreshadowed by the accurate
determination of (k 	c � 2, Fig. 2.

The restrictions which should be placed on the determination of the “differential true
heat transfer coefficients” are also illustrated by the determination of (k 	 � 0c � 162, Fig. 10.
It can be seen from this figure and/or spreadsheet 2 that the range of the extrapolation
required to remove (nominally) the effects of CpM on the derived heat transfer coeffi-
cient is much longer than for the equivalent determination of (k 	 � 0c � 161. The abscissae are
still ca 10% of the ordinates even at the end of the region which can sensibly be used for
the determination of (k 	 � 0c � 162 (say, 3 hours after the application of the calibration pulse).
It follows that a 20% error in CpM will lead to at least a 2% error in (k 	 � 0c � 162. Of course,
such effects are not apparent when using data produced by simulations free of “noise”
but we would predict that procedures based on making thermal balances close to t � t1

will not give accurate “true heat transfer coefficients” and that we should instead rely
on evaluating (k 	c � 12 (and of related coefficients) at times close to t � t2. This point,
which will be further illustrated in Section 6, was of key importance to the specification
of the ICARUS procedures [1].

The value of (k 	 � 0c � 162 obtained from Fig. 10 is also shown on Fig. 9. Although this value
agrees with those described by methods judged to be satisfactory, it should be noted
that this agreement is largely due to the use of data free from all ambiguities (absence
of “noise,” time dependence of the heat transfer coefficients, timing errors). The use
of experimental data leads to a marked degradation of the evaluation, see Section 6. A
major reason for this degradation is that the data points having the highest statistical
weight are also the ones which have the lowest accuracy, Fig. 10 and spreadsheet 1.
It is possible, however, that the use of statistical weighting procedures would allow
satisfactory estimates of (k 	 � 0c � 162 to be made.

Figure 9 also shows the values of (k 	 � 0c � 152 and (k 	 � 0c � 172 derived from spreadsheet 1 by
using Eq. (12). The form of this equation shows that the derivation of these versions
of the heat transfer coefficient is, in fact, dependent on the interpretation of cooling (or
heating) curves, i.e., the driving force is now the enthalpy content of the calorimeters
rather than the heater calibration pulse, ∆Q (these methods were developed largely as
part of a program of work on the interpretation of phenomena linked to “Heat after
Death”). As would be expected, the accuracy of these estimates of the heat transfer
coefficient is limited even when using data free from all ambiguities. The accuracy of
estimates of (k 	 � 0c � 152 and (k 	 � 0c � 162 can never be greater than that of CpM when using real
experimental data. This accuracy is further degraded by the fact that the estimates are
dependent on the derivation of � d∆θ � dt � in regions where the accuracy of this gradient
is limited by the length of the data acquisition interval.
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Although Fig. 9 shows three data points for each of these estimates of the “true heat
transfer coefficient,” we would expect that only one such data point could be derived
when using experimental data in view of the need to estimate (d∆θ � dt).

d) In this sub-section, we are also including a second set of evaluations which exactly
follow the set described above, Figs. 4 through 10, except that d∆θ � dt has been esti-
mated using the first order backward difference. Comparison of Figs. 11 and 4 shows
that the errors in (k 	c � 11 are now markedly increased in regions where (d∆θ � dt � is large:
as expected, the errors in (d∆θ � dt) based on the first order differences are much larger
than those based on the second order differences. Nevertheless, satisfactory values of
(k 	c � 11 can be obtained provided measurement cycles of 48-hour durations are used.

Figure 11 also includes values of (k 	 � 0c � 151 
 k 	 � 0c � 161 
 k 	 � 0c � 171 and � k 	 � 0c � 181 determined by
using the relevant extrapolations, Fig. 12 through 15. It can be seen that these values of
the heat transfer coefficient can again be estimated satisfactorily. However, the slopes of
the regression lines are markedly reduced (due to the incorrect estimation of (d∆θ � dt � )
so that the values of CpM are now also too low. Of course, application of this method-
ology to “real experimental data” would then lead to erroneous estimates of (k 	c � 11.
Figure 16 gives the plot of (k 	c � 12 versus time again based on the first order backward
differences while Fig. 17 illustrates the estimation of (k 	 � 0c � 162. Comparison of Figs. 16
and 9 shows that (k 	c � 12 is now markedly in error in the time region adjacent to t1: it is
necessary to extend measurements to at least 7 hours in order to ensure that the errors
due to the incorrect estimation of (d∆θ � dt � fall below 0.1% (the target specification
for ICARUS-1). Of course, this situation if aggravated when using “real experimental
data” in view of errors in estimation of CpM. Figure 17 shows that satisfactory values
of (k 	 � 0c � 162 can still be obtained when using such incorrect estimates of (d∆θ � dt). This
would be expected because the extrapolation procedure removes the effects of CpM.
Needless to say, the value of CpM derived is markedly in error. Comparison of Fig. 17
with spreadsheet 2 leads to a further important conclusion. We can see that satisfac-
tory extrapolations can be obtained even though the “point-by-point” values are totally
in error at short times. As has already been noted, such long extrapolations are to be
avoided when evaluating experimental data.

Figure 16 also includes some values of (k 	 � 0c � 152 and (k 	 � 0c � 172 derived from spreadsheet
2. It can be seen that these values are markedly in error even when using the correct
value of CpM. However, we note that values close to 0.073000 WK � 1 (the value in the
simulation) would be obtained if the incorrect estimate of the water equivalent (318.1
JK � 1) derived in Fig. 17 were used to calculate the “point-by-point” values of (k 	 � 0c � 152

and (k 	 � 0c � 172. It follows that the estimates of CpM and of (k 	 � 0c � 152, � k 	 � 0c � 162 and (k 	 � 0c � 172

are internally consistent even through the component parts deviate from the true values.
The procedures used to calculate these values of the “true heat transfer coefficients”
must therefore be used with due care – in fact it is best to avoid such methodologies.
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(e) We will consider next the derivation of the various versions of the integral heat
transfer coefficients. The (k 	 � 0c � 21 spreadsheet, spreadsheet 3, gives the integrals required
for the evaluation of (k 	c � 21 and (k 	c � 31 and Fig. 13 gives the plots of these two heat
transfer coefficients against the time. It can be seen that except for small deviations of
(k 	c � 31 from the value 0.073000 WK � 1 used in the calculation of the “raw data,” the two
estimates of the heat transfer coefficient agree with this value. The reason for the small
deviations of (k 	c � 21 at short times are immediately evident. The term

CpM � θ � θ0 ���98 t

t2
f � θ � dτ

is negligibly small for the estimation of (k 	c � 21 because � θ � θ0 � is itself small for the
backward integration. On the other hand, the term

CpM � θ � θ0 ��� 8 t

t1
f � θ � dτ

is initially more than 10% of (k 	c � 31 for the forward integration procedure. The de-
ficiencies of using the trapezium rule coupled to the use of an inadequately long data
acquisition interval are therefore immediately apparent. It should be noted that the plots
of (k 	c � 21 and (k 	c � 31 versus time do not show any effect due to the discontinuities at t � t1

and t � t2, provided the integral of the enthalpy input has been correctly estimated at
these points. The reason for this suppression of the effects of the discontinuities is sim-
ply that the magnitudes of the integrals are now sufficiently large so that errors due to
the use of the trapezium rule coupled to the use of an inadequate long measurement
interval are no longer detectable.

These effects (and noneffects!) due to errors in the estimation of the integrals were of
key importance to the evolution of the ICARUS-1 data processing strategy in particular
the preference for the methods leading to (k 	 � 0c � 2 � j � 2 rather than for (k 	 � 0c � 3 � j � 2.

Figure 19 and spreadsheet 4 give comparisons of (k 	c � 21 and (k 	c � 22. It can be seen
that the evaluation of the “true heat transfer coefficient, (k 	c � 22, is satisfactory under
all conditions. This is also brought out very clearly by considering the extrapolation
procedures, Figs. 20 and 21. In particular, in the estimation of (k 	 � 0c � 262, the term

CpM � θ � θ0 ��� 8 t

t2
f2 � θ � dτ

never exceeds 10% of the term

8 t

t2
∆Hdτ �'8 t

t2
f2 � θ � dτ �

The situation is radically different for the evaluation of (k 	 � 0c � 362, spreadsheet 5. While
the extrapolation procedure for obtaining (k 	 � 0c � 361, Fig 22, is still reasonably satisfac-
tory, provided the points immediately adjacent to t1 are excluded (the abscissae never
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exceed 15% of the ordinates, spreadsheet 5), that for (k 	 � 0c � 362, Fig. 23, is unsatisfactory
because the range of the extrapolation required is very long (note the magnitudes of the
ordinates and abscissae in spreadsheet 5 and the fact that the abscissae are almost equal
to the ordinates at short times). Such evaluations will also be markedly degraded by
the “noise” of real experimental data. Furthermore, even the borderline fits obtained
must be to some extent fortuitous because the replacement of integrations using the
trapezium rule by the mathematically sound mid-point rule, Figs. 24 and especially
Fig. 25, gives less satisfactory results than those obtained in Fig. 23. (Note especially
the erroneous values of CpM.)

The conflicting effects of changes in the integration methods and data acquisition in-
terval have never yet been resolved. In view of this situation, it was recommended in
the Handbook for the ICARUS-1 system [1] that (k 	c � 32 be evaluated at times close to t2
where the effects of the term

CpM � θ � θ0 ��� 8 t

t1
f2 � θ � dτ

on the overall value of(k 	c � 32 are reduced. However, following the receipt of the first
set of data from the NHE Laboratory [11], it became clear that the Group would never
achieve satisfactory evaluations of this version of the “true heat transfer coefficient.” As
(k 	 � 0c � 262 could be evaluated satisfactorily under all conditions, it was recommended that
future evaluations should be based on this version of the “true heat transfer coefficient.”

This recommendation was also influenced by a consideration of the effects of timing
errors. As has already been explained, the times of application and cessation of the
heater calibration pulses did not coincide exactly with the data acquisition points in
the pre-ICARUS phase of the investigation. Furthermore, there were evident timing
errors in the ICARUS-1 systems. These timing errors did not affect the determination
of (k 	 � 0c � 262 as the times of the data acquisition points were known exactly. Nevertheless
we investigated the effects of gross errors in the estimation of

�
∆Hdτ on the evaluation

of (k 	 � 0c � 261 and (k 	 � 0c � 262. See Figs. 26 through 29 and spreadsheet 4. It can be seen that
such gross errors lead to a maximum error of 0.5% in (k 	 � 0c � 262.

Such evaluations are therefore reasonably satisfactory. On the other hand, evaluations
of (k 	 � 0c � 361 and (k 	 � 0c � 362 fail almost completely. Thus, Figs. 30 and 31 (spreadsheets
5) show that erroneous values of both the “lower bound heat transfer coefficients” and
of the water equivalent are obtained if there are errors in

�
∆Hdτ. Nevertheless, the

values of (k 	c � 31 at long times are still within the acceptable range as specified in the
ICARUS-1 Handbook [1]. The extrapolations required for (k 	 � 0c � 362 fail completely (and
the estimates of CpM vary widely) as shown by Figs. 32 through 37. Examination
of the sets Figs. 32 through 34 and Figs. 35 through 37 shows that the values of
(k 	 � 0c � 362 and CpM deduced depend on the range of the regression lines fitted. This is
just the sort of behavior which was detected in the limited information available about
the experiments carried out by NHE. We believe therefore that the malfunctions which
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they have reported are in large measure due to the combination of estimating the “true
heat transfer coefficients” by using (k 	 � 0R � 362 without any correction of the effects due to
timing errors.
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SECTION 6: EVALUATION OF A MEASUREMENT CYCLE FOR A “BLANK
EXPERIMENT” (Pt cathode polarized in 0.1M LiOD/D20) USING AN ICARUS-2
SYSTEM.

It has been explained elsewhere the reasons why we have very few data sets collected
with the ICARUS-1 and -2 systems. However, some of the “raw data” for parts of a
“blank experiment” carried out during the summer of 1995 using an ICARUS-2 system
installed at IMRA Europe are available. This experiment used a Pt cathode polarized in
0.1 M LiOD/D2O in an ICARUS–2 cell (having an extended length of silvering in the
upper portion of the cell). This measurement cycle belongs to one set of calibrations of
the ICARUS-2 systems carried out at that time. Unfortunately, these calibrations were
terminated in 1995 and most of the data collected at that time are no longer available.

This data set can be regarded as being satisfactory except in one regard. At that time,
the cells had been wired to the “switching boxes” using thin wire. This was to be
replaced by thick wire, but, unfortunately, the wiring of the calibration heaters was not
changed. The power delivered to these heaters therefore has to be corrected for voltage
losses external to the cell. This correction is ca 2% of the nominal power delivered to
the cell and can be made to better than 0.1% of the 2% level. The possible error in the
calibration power is therefore well below the target value for obtaining the “true heat
transfer coefficients” with errors below 0.1%. The power delivered to the calibration
heater was 0.23025W and the cell current was 0.20306A.

(a) We again start by plotting the “raw data,” this time of the cell temperature and cell
potential versus time, Fig. 38, and by constructing the relevant (k 	R � 11 spreadsheet,
spreadsheet 6. Here, we have used the third measurement cycle so as to be consistent
with later evaluations (to follow). It can be seen that such measurements for “blank
systems” do not show any anomalies. In particular, the initial temperature perturbation
due to the refilling of the cell (to make up for the losses of D2O due to electrolysis)
relaxes within, say, 7 hours; in view of the much larger amplitude of the temperature
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perturbation due to the application and cessation of the heater calibration pulse, we
need to allow at least 8.5 hours to “eye-ball” the relaxations in the regions t1 � t � t2
and t2 � t � T . One reason for the specification of the 48-hour long measurement cycles
will be apparent immediately; such measurement cycles allow us to make the durations
of t1 – t0 and t2 � t1 equal to 12 hours.

It will also be evident that the temperature following the cessation of the calibration
pulse relaxes to the sloping base line. Furthermore, it will be clear that the system
normally shows “negative feedback” in that increases of the cell temperature lead to a
lowering of the enthalpy input (and vice versa). Tests of this “negative feedback” will
be discussed in later sections.12

If we accept data sets such as those in Fig. 38 as being “reasonably normal,” we can
evaluate the “lower bound” and “true heat transfer coefficients” at a time close to t2 by
using the graphical methods. We obtain

� k 	R � 11 � 0 � 61844 : 10 � 9WK � 4 with Eth � b � 1 � 54V (54)

� k 	R � 11 � 0 � 62006 : 10 � 9WK � 4 with Eth � b � 1 � 527V (55)� k 	R � 2 � 0 � 62027 : 10 � 9WK � 4 � (56)

The close agreement of Eqs. (54) and (56) is almost certainly fortuitous because we
expect the errors in (k 	R � 2 to be ca ; 0.002 : 10 � 9 WK � 4. If we accept the values
given by Eqs. (55) and (56), then we deduce a rate of excess enthalpy generation of
0.00034W, a value which is comparable to those which we had observed previously
for “blank experiments” [5, 6, 8]. As was noted previously, such low values are below
those expected for the reduction of electrogenerated oxygen present in the solution.
This can be explained by the degassing of the solution adjacent to the cathode by the
electrogenerated deuterium.

In this preliminary assessment, we also prepare plots on an expanded scale of the
temperature–time data in the regions adjacent to t1 and t2, Fig. 39 (compare Fig. 3).
We can see that the times of application and cessation of the calibration pulse are ade-
quately synchronized with the data acquisition points (although such extrapolations for
“real” experimental data are inevitably less certain than those for simulation, Fig. 3). It
follows that it is sufficient to insert single additional points at t1 and t2 in the preparation
of the (k 	R � 21-spreadsheet.

12As we have always explained, it is essential to produce such graphs of the raw data in order to check on
the normality (or otherwise) of the experiments. The data shown in Fig. 38 are “reasonably normal,” i.e.,
we can judge them as being suitable for further evaluation although it was apparent that the “noise levels”
had increased compared to the data sets which had been collected in Salt Lake City and, subsequently, in
the “old part” of the IMRA, Europe Building in Sophia Antipolis. This increase in the “noise levels” caused
some degradation in the evaluations compared to those which we could achieve previously up to the end of
1992. This was already apparent in 1994 at which time we tried to find the causes for the increases in “noise.”
Unfortunately, the attempts to do so were stopped.
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The evaluation of (k 	R � 11 (at a point close to t � t2) and of (k 	R � 2 is important for the
evolution of the research program as well as for the assessment of the validity of other
methods of data evaluation. We note in the first place that these “lower bound” and “true
heat transfer coefficients” are, respectively, the least precise and least accurate values
which can be obtained from the experimental data. Any conclusion that the precisions
and accuracies of other methods of data evaluation are lower than this (as determined
by repeated calibrations for “blank experiments”) show that either the experiments have
been carried out incorrectly or that the methods of data evaluation are invalid. We note,
secondly, that the Second Law of Thermodynamics requires that (k 	R � 2 , � k 	R � 11 (at the
same point in time). Any conclusion that (k 	R � 11 , � k 	R � 2 can only be explained by either
errors in the execution of the experiments or the presence of variable sources of excess
enthalpy. If the latter statement is true, it is then impossible to calibrate any conceivable
calorimetric system and, in that eventuality, we need to rely on separate calibrations of
the calorimeters.

(b) We next carry out a detailed examination of the (k 	R � 11 spreadsheet, spreadsheet 6.
We first of all prepare a plot of (k 	R � 11 versus time, Fig. 40 (compare Fig. 4) on which

we also show the derived values of (k 	R � 11. The error bars show ; σ of (k 	R � 11. The
“lower bound heat transfer coefficient” shows the expected linear decrease with time
and the relevant regression line is drawn on the plot.

We also examine the extrapolations required to obtain (k 	 � 0R � 151, � k 	 � 0R � 161, � k 	 � 0R � 171, and
(k 	 � 0R � 181, Figs. 41 - 44 (compare Figs. 5 - 8, Section 6). Of these plots, Figs. 41 and
42 are probably soundly based in that the origin of the abscissae (where d∆θ � dt � 0)
can be defined on Fig. 38. The origin for Fig. 43 cannot be defined and this puts
the mathematical validity of Fig. 44 in doubt as this requires a combination of the
data used in Figs. 42 and 43. Here, we have said “probably soundly based” because the
question of the origins for plots of this kind needs further investigation using appropriate
simulations. Notwithstanding our reservations about the validity of Fig. 44, we regard
this plot as the best way of estimating the “lower bound heat transfer coefficients” and
the water equivalent of the cells in the vicinity of t2. The water equivalent can also
be estimated from a similar plot for (k 	 � 0R � 281, see Fig. 55 below, and the compromise
value of 330 JK � 1 has been used to derive the (k 	R � 11 spreadsheet, spreadsheet 8. This
spreadsheet is actually the first iteration in the calculation scheme.13

In view of the scatter of the points in Fig. 40, the values of (k 	 � 0R � 151, � k 	 � 0R � 161, � k 	 � 0R � 171

and (k 	 � 0R � 181 have not been added to this plot (contrast the plot of (k 	c � 11 versus time,
Fig. 4) but are given on a separate plot, Fig. 45, with respect to the regression line in
Fig. 40. Figure 45 also includes the value of (k 	R � 11 derived by the graphical method,
Fig. 38.

13As has already been noted in Section 6, we do not believe that this iteration has been carried out in the
evaluations of the NHE data sets.
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(c) In the next step, we evaluate (k 	R � 12 and (k 	R � 12 and plot these “true heat transfer
coefficients” versus time in Fig. 46. In carrying out this evaluation, we estimate the
values of Ec and θ at any given time within t1 � t � t2 by fitting regression lines through
the data shown in Fig. 38 but excluding the region t1 � t � t2 and those plots where the
temperature and cell potential relax following perturbations. It will be evident that the
scatter of the values of (k 	R � 12 in Fig. 46 is much larger than that for (k 	R � 11 shown in
Fig. 40 (the regression line for (k 	R � 11 is also shown in Fig. 46).

Figure 47 gives the evaluation for (k 	 � 0R � 162 and Fig. 48 shows values of (k 	 � 0R � 152,� k 	 � 0R � 162, � k 	 � 0R � 172 and (k 	R � 2 again with respect to the regression line for the variation
of (k 	R � 11 with time, Fig. 40. The increased scatter compared to the data in Fig. 45 will
again be apparent. We conclude therefore that the evaluation of the “differential true
heat transfer coefficients” will not be useful for calculating the rates of excess enthalpy
generation. However, this does not mean that we cannot evaluate the differential rates –
if we should wish to do so. The way in which we can circumvent the errors introduced
by the determination of the “differential true heat transfer coefficients” is discussed in
subsection of Section 6 (f) below.

(d) We will not describe/discuss the use of the first order backward difference in the
evaluation of (d∆θ � dt � when considering the analysis of experimental data.

(e) We will consider next the derivation of the various versions of the integral heat
transfer coefficients. The (k 	R � 21-spreadsheet, spreadsheet 7, gives the integrals required
for the evaluation of (k 	R � 21 and (k 	R � 31 and Fig. 49 gives the plots of these coefficients
versus time. Figure 50 gives a comparison of (k 	R � 21 with (k 	R � 11 and it can be seen
that the use of the integral procedure leads to a marked reduction of the errors due to
the differentiation of “noisy” experimental data (which is required for the evaluation of
(k 	R � 11 and the derived (k 	R � 11). Inevitably, the values of (k 	R � 21 and (k 	R � 11 converge at
long times where the definitions of the integral and differential heat transfer coefficients
are equivalent. Equally the value of (k 	R � 31 at short times (as given by the regression line
through the points at long times) converges onto the value of (k 	R � 11 at short times as
these values are again equivalent, Fig. 49.

It can be seen from Figs. 49 and 50 that the values of (k 	R � 21 at long times deviate
somewhat from the regression line. The reason for these deviations is that it is necessary
to carry out ca 100 integration steps in order to suppress the random errors in f1 � θ �
and the enthalpy input. Of course, the integration procedure still leaves us with the
random errors in � θ � t �<� θ0 � . However, it can be seen from Figs. 49 and 50 that the
further averaging to give (k 	R � 21 has a negligible effect on the errors of this heat transfer
coefficient.

It can also be seen from Fig. 49 that the deviations of (k 	R � 31 at short times from the
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relevant regression line are much larger than those of (k 	R � 21 at long times. The major
reason for this effect is that the use of the trapezium rule (coupled to a rather long mea-
surement interval) introduces appreciable errors into the integration of f1 � θ � and the
enthalpy input in regions where these two variables are changing rapidly with time. By
contrast, the integrations required for (k 	R � 21 take place in an initial region where f1 � θ �
and the enthalpy input are nearly constant with time. The curvatures of these variables
with time at short times then have negligible effects on the integrals and the trapezium
rule is perfectly adequate for the numerical integrations. This was the major reason for
our preference for the use of (k 	R � 21 as compared to (k 	R � 31. There are, however, sec-
ondary reasons for this preference. These include the fact that � θ � t �#� θ0 � is appreciable
for the initial region of the estimation of (k 	R � 31 whereas it is negligibly small for the
evaluation of (k 	R � 21. Furthermore, the term

CpM � θ � θ0 � 8 f1 � θ � dt

remains appreciable throughout the range of the evaluation (so that the values of (k 	R � 31

are subject to errors in CpM) whereas one can find regions where

CpM � θ � θ0 � 8 f1 � θ � dt

is zero (so that the values of (k 	R � 21 at these times are independent of CpM).

It can be seen from Figs. 49 and 50 that the slope of the regression line for the variation
of (k 	R � 11 with time is roughly twice that for the variations of (k 	R � 21 or (k 	R � 31 with time.
This is to be expected. The time dependence of the heat transfer coefficients, Eq. (21),
does not need to be taken into account when evaluating the differential version; it is
then the variation of (k 	R � 11 with time which reveals this time dependence. This is just
the term γt in Eq. (21) and we see that we can obtain a “good” value of γ from the slope
of the regression line, Fig. 40. In the evaluations of (k 	R � 21 and (k 	R � 31 using Eqs. (13)
and (14) we have usually defined f1 � θ � using Eq. (4) whereas our experience with the
evaluations of (k 	R � 11 teaches us that we should use the definition Eq. (21). Integration
of this equation gives

� k 	 � 0R �*� 8 f1 � θ � dτ � γt 8 f1 � θ � dτ � γ 8-8 f1 � θ � dτdτ � � (57)

If we now regard f1 � θ � as being constant throughout the measurement cycle (which is a
rough approximation for the case of the “lower bound heat transfer coefficients”), then
the integral becomes � k 	 � 0R � f1 � θ � t � 1 � γt

2
� � (58)

It follows that the heat transfer coefficients given by Eqs. (13) and (14) are given by

� k 	R � 21 � � k 	 � 0R � 21 � 1 � γ � T � t �
2

� (59)
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and � k 	R � 31 � � k 	 � 0R � 31 � 1 � γt
2
� (60)

within the limits of this approximation. (k 	 � 0R � 21 and (k 	 � 0R � 31 are respectively the values
of (k 	R � 21 at t � T and of (k 	R � 31 at t � 0. It follows that the slopes of the plots of (k 	R � 21

and (k 	R � 31 versus time are one half of the plot of (k 	R � 11 versus time.

Equation (57) also shows the way in which we can test whether the characteristics of
the Dewar cells can be described by a single, time-independent heat transfer coefficient.
Thus, evaluation of (k 	R � 21 according to Eq. (13) gives us the heat transfer coefficient

� k 	R � 21 � � k 	 � 0R � 21 = 1 � γt � γ 8 t

T
8 t

T
f1 � θ � dτdτ >?�98 t

T
f1 � θ � dτ (61)

so that the “time-independent” heat transfer coefficient (k 	 � 0R � 21 is readily determined.
Figure 51 shows this derived coefficient versus the measurement interval. We can see
that if we exclude the region adjacent to T (where the methodology is unreliable) the
values of (k 	 � 0R � 21 are within ; 0.01% of the mean of (k 	 � 0R � 21 (the relative standard devi-
ation is 0.0063%). This is the basis of our statement that the “integral lower bound heat
transfer coefficient” can be determined with a precision given by a relative error of less
than 0.01%. We note that the errors in (k 	 � 0R � 21 shown in Fig. 51 are somewhat larger
than those which we observed in the earlier work.

The success in deriving an unique value of (k 	 � 0R � 21 brings in its train two further aspects.
First of all, we need to assess the likely errors of the “point-by-point” values of (k 	R � 21

and (k 	R � 31. Examination of spreadsheet 10 shows that the “minor term”

CpM � θ � θ0 ��� 8 t

T
f1 � θ � dτ

is maximally ca ; 1.4% of the derived values of (k 	R � 21 (at the points t � 0 and t � t2).
On the other hand, this “minor term” rises to ca 25% of (k 	R � 31 within the calibration
period t1 � t � t2 and is ca 7% of (k 	R � 31 at t � 0. Evidently, the heat transfer coeffi-
cients based on the backward integration procedure are to be preferred to those based
on forward integration. Secondly, we see that the preferred procedure would be to use
extrapolation procedures to remove the effects of the water equivalent, which is the
parameter subject to the greatest uncertainties.

Figures 52 through 55 show such extrapolation procedures for deriving (k 	 � 0R � 251, � k 	 � 0R � 261,� k 	 � 0R � 271, and (k 	 � 0R � 281, as well as the corresponding values of CpM. The extrapolation
in Fig. 52 will be to a point in the range 0 � t � t1 where the temperature is equal to that
at the end of the measurement cycle (roughly at 6900s). As can be seen the values of
(k 	R � 21 and (k 	 � 0R � 251 show that this is indeed so. The extrapolations in Figs. 53 through
55 should all be to the end of the measurement cycle at t � T . However, the values
of (k 	 � 0R � 261 
 � k 	 � 0R � 271 and (k 	 � 0R � 281 are somewhat larger than that of (k 	R � 21 at that point
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(given the value read off from the regression line). In 1992/93, we concluded that this
was due to the range of the extrapolation required being too long. In order to avoid this
difficulty, we restricted the integrations to t1 � t � t2 and set the origin of the abscissa
at a time close to t � t2. The extrapolation, Fig. 62, will now be to the value of (k 	R � 11

at this point and this is again the case (see also spreadsheet 8).

Figure 60 gives the “point-by-point” values of (k 	R � 21 for the time range
t1 � t � t2 and these are somewhat below the variation predicted based on the assump-
tion in Eq. (59). We note that it has never been resolved whether the small discrepan-
cies observed are due to using this assumption rather than Eq. (61) (however, they are at
least due in part to the use of Eq. (59) rather than (61)). Instead, we have recommended
the use of the extrapolation procedure shown in Fig. 62. In attempting to interpret the
variation of (k 	R � with time shown in Fig. 60, it should also be born in mind that the
values of this heat transfer coefficient are unreliable for about the first 110 integration
intervals adjacent to t � t2.

Figure 60 also gives the corresponding data for (k 	R � 32 while Fig. 63 shows that the
extrapolation procedure required for deriving (k 	 � 0R � 361 is unreliable, even if the first
11 data points are excluded from the extrapolation. The main reason for this lack of
reliability lies in the large values of the abscissae, which reach ca 30% of the value
of (k 	R � 31. (However, note that the extrapolations based on the integrals spanning the
whole of the measurement cycle 0 � t � T , Figs. 56 through 59, are somewhat more
satisfactory; the procedure for deriving (k 	 � 0R � 361, Fig. 57, is reasonably sound). It was
for this reason that this procedure was excluded in the Handbook for the ICARUS-1
systems [1]. We also see that the estimate of (k 	R � 31 at times close to t2 is somewhat
lower than that predicted from Eq. (60). However, reference to spreadsheet 8 shows
that the abscissae are still ca 2.3% of the ordinates for the evaluation of (k 	R � 31 at this
point (for the 24-hour measurement cycles used in the NHE investigations this ratio
rises to ca 4.4%). A 3% error in CpM would therefore account for such discrepancies!

Figure 61 gives the values of the “true heat transfer coefficients” (k 	R � 22 and (k 	R � 32 over
the restricted range t1 � t � t2 while Figs. 64 and 65 give the evaluations of (k 	 � 0R � 262

and (k 	 � 0R � 362. It can be seen that (k 	 � 0R � 262 is close to the value of (k 	R � 11 at t � t2 as
given by the relevant regression line. On the other hand, (k 	 � 0R � 362 deviates markedly
from the value of (k 	R � 11 at t � 0, even if we once again exclude the first 11 points from
the extrapolation. Spreadsheet 9 shows that the nominally “minor term” now reaches ca
100% of the value of the ”major term” while the ”minor term” is ca 2900% of (k 	R � 32. It
goes without saying that it is not possible to evaluate (k 	R � 32 with this particular method-
ology. It was for this reason that the ICARUS-1 Handbook recommended that (k 	R � 32

should be evaluated “point-by-point” at times close to t � t2. Spreadsheet 9 shows that
the “minor term” in the evaluation of (k 	R � 32 is still ca 12% of the major term while for
a 24-hour measurement cycle it would reach ca 25% of the major term. The accurate
determination of (k 	R � 32 is therefore fraught with difficulties. These conclusions should
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be compared with those presented in the poster given at ICCF 7 [4].

Finally, Fig. 66 illustrates the determination of (k 	 � 0R � 252, i.e., of the “true heat transfer
coefficient” without making use of the calibration pulse. Whereas the determination
of the differential coefficient (k 	 � 0R � 152 fails (because of the inevitably large errors intro-
duced by the differentiation of “noisy” experimental data), the determination of (k 	 � 0R � 252

is reasonably successful. The evaluation of this version of the “true heat transfer coef-
ficient” can therefore serve as a useful check on some of the more extreme statements
which have been made about the validity of the ICARUS-1 evaluation procedures.

(f) We come now to the principal conclusions which we can draw from the detailed
examination of “blank” experiments, taken in conjunction with the analysis of data
generated by simulations, Section 5. The optimal methodology for the evaluation of
the “lower bound heat transfer coefficient” is that based on the backward integration
leading to (k 	R � 21, although that based on the forward integration leading to (k 	R � 31 can
also be used. Furthermore, the differential form, (k 	R � 11, is also useful.

However, the only accurate method for the evaluation of the “true heat transfer coeffi-
cient” is that based on the backward integrals and, especially, the extrapolation proce-
dure giving (k 	 � 0R � 262, which was the methodology specified for the ICARUS-1 systems
[1]. It is therefore sensible to combine such values of (k 	 � 0R � 262 with the corresponding
values of (k 	 � 0R � 261. For the data set discussed here, we obtain from Figs. 60 and 61 (or
Figs. 53 and 64, spreadsheets 8 and 9):

∆ � k 	R �� � k 	 � 0R � 262 � � k 	 � 0R � 261 � 0 � 00043 : 10 � 9WK � 4 � (62)

This value is to be preferred to

∆ � k 	R �'� � k 	R � 2 � � k 	R � 11 � 0 � 00021 : 10 � 9WK � 4 
 (63)

given by the graphical methods (Eu. (55)).

It should be noted that both of these methods give values of the heat transfer coefficients
close to the mid-point of the measurement cycles (which was one reason for the spec-
ification of the time t � t2). Furthermore, the difference in Eq. (62) is actually equal
to

∆ � k 	R �'� � k 	R � 12 � � k 	R � 11 (64)

at this point. This is of no particular consequence as far as the evaluation of the total ex-
cess enthalpy for the measurement cycle is concerned because the difference in Eq.(62)
applies to any part of the cycle at the first level of approximation. It follows that

Total excess enthalpy � ∆ � k 	R ��8 0

T
f1 � θ � dτ � (65)
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For the particular example used in the present illustration, we obtain

Total excess enthalpy � 102J 
 (66)

corresponding to a mean excess rate of 0.0006 W.

However, we note that the group at NHE have attempted to calculate the variation of the
rate of excess enthalpy generation throughout the measurement cycles. At first sight,
it would appear that we need to use the correct time-dependent values of (k 	R � 12, i.e.,
[k 	R � t ��� 12. At the time of writing of the Handbook for the ICARUS-1 systems [1], it was
not clear how this variation was to be established. It became clear subsequently that
if the difference between the “true” and “lower bound heat transfer coefficients” could
be established at any one time (say ∆ � k 	R � t ), then [k 	R � t ��� 12 at any other time would be
given by � k 	R � t ��� 12 ��� k 	R � � t ��� 11 � ∆ � k 	R � t2 f1 � θ � t2 � f1 � θ � t � (67)

The ratio f1 � θ � t2 � f1 � θ � t is of order unity, which implies that the correction term is
always close to that at the calibration point.

Any attempt to calculate the variation of rates of excess enthalpy generation within
the measurement cycles must also pay due regard to the fact that it is not possible to
calibrate the systems if the rate of excess enthalpy generation varies with time. If that
is the case, then we must derive ∆ � k 	R � from separate experiments.

Equation (67) also points to a further important conclusion. Again at the time of writing
of the Handbook for the ICARUS-1 systems [1], we believed that the precision of (k 	R � 12

(and of other versions of the “true heat transfer coefficient”) would always be given by
the accuracy of that coefficient which is certainly lower than the precision of (k 	R � 11.
Equation (67) shows that this is incorrect. The precision of (k 	R � 12 is nearly identical to
the precision of (k 	R � 11. It follows that changes in the rates of excess enthalpy generation
can be established at the same level of precision as that of (k 	R � 11, i.e., with relative errors
ca 0.01%.
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SECTION 7: ASSESSMENT OF THE SPECIFICATION OF THE ICARUS–1
EXPERIMENTAL PROTOCOLS AND DATA EVALUATION PROCEDURES.

The specification of the ICARUS-1 experimental protocols and data evaluation proce-
dures has been outlined in Section 4. It is now important to assess the usefulness and
validity of this specification in the light of its application to data generated by simu-
lations (see Section 5) and by “blank” experiments (see Section 6). Of course, this
procedure is “back-to-front”: the specification, Section 4, was evolved from a consid-
eration of the type of results outlined in Sections 5 and 6.

It is also important to consider the “raison-d’être” of this part of the research program
and some comments on this are given at the end of this section. Furthermore, it is
important to consider the causes of failures to achieve evaluations especially in the light
of the well publicized publication from the group at NHE [5]. Finally, it is necessary to
consider “short-cuts” to achieving satisfactory data evaluations.

In our view, the major results derived from Section 6 (backed up by the investigation
in Section 5) are the comparisons of (k 	R � 21 and (k 	R � 11 in Fig. 50 and the reduction
of (k 	R � 21 to a single, time-independent, lower bound heat transfer coefficient, Fig. 51.
The comparison, Fig. 50, illustrates immediately the need to avoid the differentiation
of “noisy” experimental data (required for the evaluation of (k 	R � 11 and the benefits of
using instead the integration procedures in deriving (k 	R � 21); however, see further below.
This was the basis for the specification of the construction of the (k 	R � 21 spreadsheets
following on the construction of the (k 	R � 11 spreadsheets (see (vi) and (vii) of Section
4).

Results such as those illustrated in Fig. 50 show that it is possible to interpret the
systematic variations with time of ca 0.4% of the “integral lower bound heat transfer
coefficient” while Fig. 51 shows that it is possible to reduce such data to a single, time-
independent, heat transfer coefficient, (k 	 � 0R � 21 with relative errors below 0.01%. This

40

New
 E

ne
rgy

 Tim
es



result is hardly surprising. The “physics” of the calorimeters are quite simple (they are
“ideal well stirred tanks”) and the errors are mainly due to those set by the temperature
measurements. It is also relatively straightforward to specify the changes which would
need to be made to reduce the errors – say, to 0.001% – if that should ever prove to be
necessary or desirable.

The comparison of (k 	R � 21 with (k 	R � 31 in Fig. 50 as well as in spreadsheet 7 shows that
the errors in (k 	R � 31 are inevitably larger than those of (k 	R � 21. This is mainly due to the
larger contribution of the term

CpM � θ � θ0 ��� 8 t

0
f1 � � θ � dτ

to (k 	R � 31 rather than the corresponding contribution of

CpM � θ � θ0 ��� 8 t

T
f1 � θ � dτ

to (k 	R � 21. We can see immediately, that given the option of using forward or backward
integration we should use the latter in order to achieve accurate evaluations. This re-
striction becomes much more important, however, when we consider the derivation of
the “true heat transfer coefficients,” (k 	R � 22 and (k 	R � 32, as well as of the likely effects of
timing errors on the evaluations. Such evaluations must necessarily be mainly restricted
to the duration of the calibration pulse, t1 � t � t2. Figures 60 and 61 and the associated
spreadsheets 8 and 9 show that whereas an initial assessment might well be based on the
use of (k 	R � 31, the evaluation and use of the “true heat transfer coefficient,” (k 	R � 32, must
follow strictly the instructions laid down in the ICARUS-1 Handbook [1] (see (vii) of
Section 4) – and, even then, the errors are much larger than those of (k 	R � 22.

The optimum methodology for deriving the difference between the “true” and “lower
bound heat transfer coefficients,” i.e., ∆ � k 	R � , Eq. (62), is to estimate (k 	 � 0R � 262 from plots
such as that in Fig. 64 and (k 	 � 0R � 261 from the corresponding plot in Fig. 62. Such evalua-
tions automatically eliminate the contributions of the water equivalent on the estimates,
a parameter which is subject to the greatest degree of uncertainty. The evaluation of the
difference ∆ � k 	R � allows us also to circumvent the errors in the evaluation of the “true
differential heat transfer coefficient,” (k 	R � 12, Fig. 46, because ∆ � k 	R � applies equally to
(k 	R � 12 and (k 	R � 11, Eq. (64), as to (k 	 � 0R � 262 and (k 	 � 0R � 261, Eq. (62). It follows. therefore
that we can evaluate rates of excess enthalpy generation at the level of accuracy deter-
mined by ∆ � k 	R � and precision of (k 	R � 11. However, we cannot see why we should ever
wish to do so, given that we have had to evaluate the backward integrals to determine
∆ � k 	R � so that the values of the total excess enthalpy in a measurement cycle (or any
given part of a measurement cycle) follow immediately as by the application of Eq.
(65). If we evaluate instead the rates of excess enthalpy generation, then we must sum
these rates (multiplied by the measurement interval) to obtain the total excess enthalpy
[4] (more exactly, we need to apply an appropriate integration rule).

41

New
 E

ne
rgy

 Tim
es



Sections 5 and 6 also illustrate the evaluations of the ”time-independent” heat transfer
coefficients (k 	 � 0R � 151, (k 	 � 0R � 161, (k 	 � 0R � 171, (k 	 � 0R � 181, (k 	 � 0R � 152,
(k 	 � 0R � 162, (k 	 � 0R � 172, (k 	 � 0R � 251, (k 	 � 0R � 261, (k 	 � 0R � 271, (k 	 � 0R � 281, (k 	 � 0R � 252, (k 	 � 0R � 262,
(k 	 � 0R � 272, (k 	 � 0R � 351, (k 	 � 0R � 361, (k 	 � 0R � 371, (k 	 � 0R � 381, (k 	 � 0R � 352, (k 	 � 0R � 362 and (k 	 � 0R � 372. Of
these, the evaluations of (k 	 � 0R � 261 and (k 	R � 262, Figs. 62 and 64, were the methodolo-
gies specified for the ICARUS-1 system. The reduced precisions and accuracies of the
series (k 	 � 0R � 1 � j � l compared to those of (k 	 � 0R � 2 � j � l will be apparent as will be the reduced

precisions and accuracies of the series (k 	R � 3 0 j 0 l compared to those of (k 	 � 0R � 2 � j � l . The

evaluation of (k 	 � 0R � 362, Fig. 65, is especially prone to error.14

The failure to achieve satisfactory calibrations of the cells using the procedures leading
to (k 	R � 362 in the studies by the group at NHE coupled to the evident timing errors
in the ICARUS-1 system installed in Sapporo, also prompted an investigation of the
likely effects of such errors if these were not properly taken into account. Figs. 26-37
show the expected results. Whereas the “target evaluations” of (k 	 � 0R � 261 and (k 	 � 0R � 262

are relatively insensitive to the effects of such errors (Figs. 26-29), the evaluations of
(k 	 � 0R � 361 and (k 	 � 0R � 362 are markedly degraded (Figs. 30-37). Moreover, the values of
(k 	 � 0R � 361 and (k 	 � 0R � 362 (the intercepts of the plots) now depend on the time range of the
regression fit (the discussion of these effects is beyond the scope of the present report).
It is evidently critically important to avoid the effects of such timing errors because
there are other reasons which preclude the achievement of satisfactory calibrations most
notably the effects of changes in the rates of excess enthalpy generation especially
those due to “positive feedback,” e.g., see [4,12]. It is essential therefore that tests
of the performance of the instrumentation be carried out using “blank experiments”
(see Section 4 (iii)) in order to avoid the complications introduced by the study of the
Pd-D2O system.15

Sections 5 and 6 will also have illustrated the reasons for the need to use 48- hour mea-
surement cycles [see Section 4 (i)] as well as the benefits of examining and evaluating
plots of the raw data such as that in Fig. 38 [see Section 4 (v)].

Finally, it is important to assess the usefulness of the calibration procedures described
in this section as well as the preceding sections. It appears that this is a topic which
has been misunderstood. It would hardly be possible to investigate all measurement
cycles of all experiments at the level of detail set out in Section 6. The real purpose of
developing precise and accurate methods of calibration is to gain an adequate under-
standing of the “instrument function” and then to use the calibration(s) to measure the
rates of excess enthalpy generation. A secondary objective (related to the assessment
of the calibrations) is to point the way towards necessary (or useful) improvements of

14Unfortunately, such evaluations appear to have been a major part of the investigations carried out by
NHE.

15We have never been able to obtain data for the study of any such “blank systems” which may have been
carried out by NHE.
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the instrumentation. We note here that the original cells, which were not silvered in the
top section, gave a flat temperature-time base line because changes in the heat transfer
coefficient with time were compensated by changed in the enthalpy input. However, the
heat transfer coefficients varied markedly with time and this complicated the methods
of data analysis. The silvering in the top sections of the ICARUS-1 and -2 calorimeters
has markedly reduced this time dependence of the heat transfer coefficients, but the ef-
fects (e.g., see Fig. 50) do still have to be taken into account.16 In 1990/91, it appeared
important that we should investigate a further modification of the calorimeter design
designated as the ICARUS-4 version in 1993 (the ICARUS-3 designs were never con-
structed) but redesignated since that time as ICARUS-14, vol. I, Fig. 27. We believe
that this design would give a flat base line for the heat transfer coefficient-time plot
and that this would also make the heat transfer coefficient insensitive to the operating
conditions.

An alternative approach would be to investigate the maintenance of constant electrolyte
levels as has been done in the investigations carried out by the group at Grenobles [15].
It would be important to try to secure the release of data for “blank experiments” carried
out by that group.

A secondary reason for carrying out repeated calibrations is to monitor the system be-
havior [4, 5] especially the effects of the onset of positive feedback. However, such
investigations do not need to be carried out at the high levels of precision and accuracy
required for the calibration of the calorimeters.

16We note that this has not been taken into account in the work carried out by the group at NHE.
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