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Models based on phonon exchange for excess heat production in Fleischmann-Pons
experiments are considered. In the case that sufficient phonon exchange occurs to

stabilize intermediate states containing a neutral, then a model in which excitation
is transferred from the D2/

4He system to a strongly coupled quantum system made

up of an oscillator (highly-excited phonon mode) and a Dicke system (ground state
and excited state receiver nuclei) seem appropriate. We find that a coupled Dicke

system and oscillator can support energy coupling in the case of strong coupling.
We present evolution equations for resonant coupled Dicke systems, augmented

with loss. An update is provided on phonon exchange in nuclear calculations.

1. Introduction

In 1989 there were announcements made of observations of anomalies in metal
deuterides: Fleischmann and Pons presented observations of an excess heat effect
in PdD [1], and Jones presented observations of low-level neutron emission in TiD
[2]. Since then, considerable experimental and theoretical work has been reported
on these and on other anomalies. As has been noted often over the years, the
existence of any such effects would require a significant revision of nuclear physics
to explain. We have focused our efforts on understanding the implications of these
new experiments on theory, as well as on the development of models that may be
relevant [3-5].

In the nuclear physics literature, the predominant view is that nuclear fusion
reactions that occur in condensed matter can be understood from idealized models
in which the local environment is replaced by vacuum. The basic argument is that in
order to react nuclei must approach to within a few fermis, and that the resulting
reaction is completed with fast-moving well-separated product nuclei long before
information concerning the reaction can reach neighboring atoms on an atomic
scale.

Such a picture cannot be relevant to the excess heat effect in Fleischmann-Pons
type experiments, in which a large amount of energy (apparently of nuclear origin)
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Figure 1. Scheme proposed for excess energy production. Molecular deuterium in condensed

matter makes transitions to 4He states through intermediate n+3He states, with stabilization of
the intermediate state through large angular momentum transfer associated with phonon exchange.

The excitation is transferred to other species, which undergo fast phonon-mediated excitation
transfer reactions among themselves, transferring energy to the excited phonon mode a few tens

of phonons at a time.

appears and commensurate 4He is detected. The experimental results are consistent
with some new kind of reaction mechanism that acts as if

d+d −→ 4He + 23.8 MeV (heat)

In vacuum, two deuterons can react to produce 4He; however, energy and momen-
tum conservation results in the energy being carried off by an energetic gamma.
No such gammas or other energetic particles are present in association with the
Fleischmann-Pons excess heat effect. In our view this indicates that the lattice
participates in the reaction in some way, and that vacuum models will not be rel-
evant. Our approach then is based on including the lattice (or more generally, the
condensed matter environment) in the initial formulation at the outset [3-5]. In
such a formulation one finds that phonon exchange can occur during the fusion pro-
cess. For fast incoherent fusion reactions, the exchange of a phonon or two does not
impact the fusion rate or products in a significant way, so that the predictions of
vacuum models are generally preserved within the new formulation. The new model
opens the door to a coupling between nuclear reactions that occur at different sites,
as long as two or more phonons are exchanged at each site with a highly excited
common phonon mode. In this case, there is the possibility of new second-order or
higher-order quantum processes. We have discussed these ideas in some detail in
our earlier ICCF conference papers, to which the interested reader is referred.

2. Model for excess heat production

At present, we are considering a model for excess heat production that is illustrated
schematically in Figure 1. There are a number of ideas that are incorporated in
this scheme. All transitions are mediated by phonon exchange (or by the exchange
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of similar quanta of a macroscopic condensed matter system that produces local
acceleration of nuclei). In order to couple to the lattice, all individual nuclear
transitions must involve a neutral, such as n+3He → 4He, so that the initial and
final states appear to the lattice to have different mass (since the lattice does not
see neutrals). In the case of AZ, the excited state (AZ)* is one in which there is a
neutron or neutron cluster and a lower mass daughter with charge Z. Excitation is
transferred from the D2/4He system on the right to the receiver nuclei on the left.
In our early work we considered that 4He would be appropriate receiver nuclei in
this sense, but it is clear that other nuclei such as Pd or other host lattice nuclei
should be able to participate, with neutron-rich isotopes being able to couple more
easily to the lattice. As in our earlier publications, we consider the initial fuel to
consist of molecular D2 in condensed matter (we note that a similar scheme should
be possible for HD).

To analyze this kind of scheme, we require two different basic tools. On the one
hand, we need to analyze the microscopic interactions between nucleons in order to
understand phonon exchange and develop estimates for transition matrix elements.
In addition, we would like to understand the structure of the intermediate n+3He
state, and the stability of excited neutral plus daughter states in general that are
involved in the fast excitation transfer on the receiver side. On the other hand, we
need models that are relevant to the many-site version of the problem. For example,
we have discussed in previous papers that such models give rise to Dicke enhance-
ment factors, and that tunneling in the coherent version of the problem appears
through a rate linearly dependent on the Gamow factor, rather than through the
square of the Gamow factor as in the case of incoherent transitions. In what follows,
we will consider both problems.

3. Coupled oscillator and two-level systems

To address many site issues, we have been investigating models made up of two-level
systems and an oscillator. The simplest example of a model that implements the
ideas outlined above is given by

Ĥ =
∆E

2
Σ̂(1)

z +
∆E

2
Σ̂(2)

z + ~ω0â
†â

+ V e−G

[
Σ̂(1)

+ + Σ̂(1)
−

]
(â + â†)m1 + U

[
Σ̂(2)

+ + Σ̂(2)
−

]
(â + â†)m2 (1)

In this model the D2/4He system is represented by the first set of two-level systems,
under the assumption that sufficient phonon exchange is present to allow transitions
through the n+3He intermediate state with negligible loss. The D2 and 4He states
are modeled as equivalent two-level systems (superscript 1 here), with transitions
between these states represented with a hindered (by a tunneling factor e−G) tran-
sition involving the exchange of up to m1 phonons. The receiver side nuclear states
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Figure 2. In the limit that the receiver-side two-level systems are strongly coupled to the oscil-

lator, then it is useful to think in terms of two-level systems coupled to a coupled oscillator and
Dicke system hybrid.

are also modeled as equivalent two-level systems (superscript 2) with unhindered
transitions involving the exchange of up to m2 phonons.

3.1. Receiver as coupled two-level system and oscillator

In this model, the receiver-side system alone is composed of two-level systems that
is strongly coupled to an oscillator. Since transitions involving the first set of two-
level systems are weak, we can think of the system in terms of weak transitions from
two-level systems (the D2/4He systems) to a hybrid coupled oscillator and Dicke
system. This is picture schematically in Figure 2.

If we adopt such a view, then we become interested in understanding the hybrid
system. The receiver-side Hamiltonian is

Ĥr =
∆E

2
Σ̂(2)

z + ~ω0â
†â + U

[
Σ̂(2)

+ + Σ̂(2)
−

]
(â + â†)m2 (2)

3.2. Localization issues

The models under discussion are relatively complicated, and it is appropriate to
make use of all tools available to gain understanding of how the models work. In the
case of the coupled oscillator and Dicke system, there is an interesting and relevant
limit that we need to consider. In the limit that the number of oscillator quanta
is very large, and also that the number of excited states of the two-level system is
also very large, then it is possible to develop analytic solutions. For simplicity, we
focus on a version of the model with single phonon exchange (m2 = 1), in which
case the limit of the coupled oscillator and Dicke model approaches

Ĥr → ∆EN + ~ω0n + g∆E(δ̂n
+ + δ̂n

−)(δ̂N
+ + δ̂N

− ) (3)
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This Hamiltonian has localized even eigenfunctions given by

Φeven
N0,n0

(N,n) =





J(N−N0)+(n−n0)

(
− 4g∆E

∆E + ~ω0

)
J(N−N0)−(n−n0)

(
− 4g∆E

∆E − ~ω0

)
N + n even

0 N + n odd

(4)

The associated eigenvalues are given by

EN0,n0 = N0∆E + n0~ω0 (5)

Very similar eigenfunctions occur for N0 + n0 odd.

3.3. Dynamics and slowly varying g

Although we have an important limit of the coupled model in which localized solu-
tions occur. What this means specifically is that the system will develop fluctuations
in n and N that are on the order of the coupling constant g. For net conversion
of nuclear energy into phonon energy, a simple fluctuation is not helpful – we need
large numbers of oscillator quanta to be converted, far more than g. Consequently,
we need to understand what effects are capable of making the eigenfunctions delo-
calized. In addition, we might expect that the rate for net energy transfer between
the two systems may be relatively small.

Since g is essentially the interaction matrix element divided by the transition
energy, it can be on the general order of the number of receiver-side two-level systems
(if we are able to arrange for half to be excited), since the underlying interaction
strength per nucleus is probably on the order of a few MeV. Hence, the coupled
system in this kind of model is very strongly coupled, and fluctuations will be very
large. As a result, the coupling strength g will vary over the eigenfunction in the
(N, n) configuration space, which can result in a finite (but small) rate of net energy
transfer.

From the results of numerical calculations some intuition has emerged concern-
ing the dynamics associated with this system (when g is not fixed as a constant).
This kind of model appears to be able to make rapid transitions between states with
different N (two-level system excitation) with little phonon exchange. Such dynam-
ics can occur on a frequency scale that is on the general order of g∆E/~. Transient
solutions can be developed which show occupation of states that correspond to
∆E/~ω0 phonons exchanged on a frequency scale that is on the general order of
gω0. However, these solutions tend to have roughly equal amounts of components
with fewer or more phonons.

We are looking instead for slower dynamics where all states occupied have
roughly the same energy, in which nuclear energy is traded off for oscillator en-
ergy. Since constant g produces localization, one might expect that variations in
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Figure 3. Spread in oscillator number ∆n (upper points) and in Dicke number ∆N (lower points)

for eigenfunctions centered near 〈N〉 = 8 and 〈N〉 = 10. The calculations performed for a set of
15 two-level systems coupled to an oscillator with large n.

g will be responsible for delocalization and consequently net energy exchange be-
tween the coupled systems. To study this we have in earlier work carried out a
change of basis in which the (N, n) configuration space is replaced by an expansion
in the localized basis functions discussed above. The general conclusion is that un-
der conditions where the approach is valid (slowly varying g), the system would be
expected to develop localized solutions made up of superpositions of localized basis
functions.

4. Delocalization

There are perhaps some positive things to be said about the problem of delocaliza-
tion. Suppose one simply sets up the coupled Hamiltonian and begins solving for
eigenfunctions, keeping track of how localized the eigenfunctions are as a function
of model parameters. To simplify things, consider the limit where the number of
oscillator quanta is sufficiently large that g does not depend on n. If we focus on
finite models, and look at the eigenfunctions that are roughly centered near the mid-
range of the problem in n and in N , we find a number of interesting conclusions.
At small g, we see localization, which can be measured quantitatively through the
ratio of the spread in n compared to the spread in N

r =
∆n

∆N
(6)

In the case of localized solutions, this ratio is essentially unity. As g increases,
the eigenfunctions begin to approach the boundaries in N , which keeps them from
expanding arbitrarily in this direction, and which also causes them to elongate in
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the n direction (since the underlying symmetry that causes localization becomes
broken). This effect is illustrated in Figure 3 in the case of 15 two-level systems.

To understand the associated dynamics we have done some computations in or-
der to find out at what frequencies dynamical transitions occur. In the calculations
so far there is a strong response (as measured through off-diagonal matrix elements
〈Φi|n|Φj〉) at

δε = 2~ω0 (7)

There are also lesser contributions at both lower and higher frequencies. The model
then has in it a characteristic time (1/2ω0) to transfer some unit of energy between
the two systems. It remains to be determined whether this is a local oscillation, or
whether it is characteristic of a more extended transfer process.

5. Dynamics of coupled Dicke systems

Based on the discussion above, we are motivated to consider a new kind of model
to describe the dynamics of the D2 system and the coupled receiver system. If
we assume that significant conversion of excitation on the receiver side to phonons
is slow, then it seems productive to neglect it completely in order to develop a
description of the excitation transfer dynamics associated with the populations.

There is the question of resonance. On the one hand, there is no reason to expect
there to be receiver nuclei transitions that are matched to the energy difference
between D2 and 4He. On the other hand, there is no excitation transfer between
unmatched Dicke systems in the limit of hindered coupling and no phonon exchange.
This sharply limits the possibilities. If the energy of the nuclear excitation is fixed
and off of resonance, then the energy difference must be made up through phonon
exchange in the strongly-coupled oscillator and Dicke system on the receiver side.
Alternatively, it may be the case that the nuclear excitation energy on the receiver
side is determined by the energy involved in the excitation transfer. The argument
in support of this is that one would expect the nuclei to have a very broad energy
response (perhaps roughly proportional to the giant dipole response, but not the
same since our excitation is not dipolar) under the conditions of excitation transfer.
After all, if a quantum of energy is transferred, and if the nuclear system does not
loose the energy, then it should be available for transferring back. Overall in this
scenario the transfer process would create a precise resonance.

From our perspective, either scenario is consistent in principle with the discus-
sion which follows. There is a price to be paid, however, if the energy difference
must be made up by phonon exchange. That price is a substantial reduction in
efficiency, since it would be that the associated “oscillator strength” of the hybrid
system must have a large energy spread.

5.1. Evolution of resonant coupled Dicke systems

Excitation transfer between resonant Dicke systems is governed by the Hamiltonian
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Ĥ =
∆E

2
Σ̂(1)

z +
∆E

2
Σ̂(2)

z + V e−G

[
Σ̂(1)

+ Σ̂(2)
− + Σ̂(1)

− Σ̂(2)
+

]
(8)

The development of evolution equations for expectation values of the pseudospin
operators is highly nontrivial in the general case, and does not appear to lead to
useful results. However, we have had success developing an approximate Ehrenfest
calculation by adopting a restricted basis composed of degenerate states. The results
of the Ehrenfest analysis, augmented empirically with loss, results in the following
coupled equations

d

dt
n1(t) = v1(t)

d

dt
v1(t) +

v1(t)
T

= a(t) (9)

d

dt
n2(t) +

n2(t)
T

= v1(t)
d

dt
v2(t) +

v2(t)
T

= − a(t) (10)

where

a(t) =
2V 2e−2G

~2

{
[N1 − n1(t)][N2 − n2(t)][n2(t) − n1(t)]

+n1(t)n2(t)[N1 − n1(t) − N2 + n2(t)]

+[N1 − n1(t)]n2(t) − [N2 − n2(t)]n1(t)

}
(11)

Here n1(t) and n2(t) are the average number of excited states in system 1 (D2 side)
and system 2 (receiver side), and v1(t) and v2(t) are the associated velocities. The
acceleration is a(t). The Dicke number for the two sides are N1 and N2, which can
be as large as the total number of nuclei involved on each side.

5.2. Example

In Figure 4 we show results from a numerical calculation of the evolution equations
for resonantly coupled Dicke systems. In this calculation we have assumed that
there are ten times more receiver side nuclei in the ground state than there are D2

molecules in the upper state. In addition, we have set the relaxation time to be
matched to the coherent transfer rate. If we use a much slower relaxation time,
then we observe population returning from the receiver side. If we use a much
faster relaxation time, then we observe a slower net transfer of excitation. The
problem in this case is that if the receiver-side nuclei decay rapidly, then there
are relatively few around to provide a (receiver-side) Dicke enhancement of the
acceleration. In essence, the fastest net energy generation rate is obtained when we
match the excitation transfer rate with the receiver-side loss.
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Figure 4. Calculation of normalized populations x(t) = n1(t)/N1 and y(t) = n2(t)/N1 as a

function of normalized time for conditions in which N2 = 10N1.

6. Avoidance of loss

We have noted previously in our quantum flow calculations that the probability
amplitude tends to avoid regions of high loss. A very much simplified version of
this argument can be given. Consider the situation of two states that are coupled,
one loss free and the other with high loss:

i~
∂

∂t
c0(t) = H0c0(t) + V01c1(t) (12)

i~
∂

∂t
c1(t) =

[
H1 − i

~γ1

2

]
c1(t) + V10c0(t) (13)

We initialize the system such that c0(0) = 1, and ask what happens later on. The
exact solution is more complicated than what we are interested in here; however,
a useful simplification is allowed if we assume that the level 1 loss is very strong.
In this case, c0 decays slowly as we will find, and we may assume that the c1(t)
probability amplitude is determined in the steady state by

c1(t) =
[
E − H1 + i~γ1/2

]−1

V10 c0(t) (14)

with E approximately H0. The resulting evolution of level 0 is then

i~
∂

∂t
c0(t) = H0c0(t) +

|V01|2

E − H1 + i~γ1/2
c1(t) (15)

The effective loss seen by level 0 is then
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γ =
|V01|2

(E − H1)2 + (~γ1/2)2
γ1 (16)

Increasing the level 1 loss γ1 to ever larger values has the perhaps unexpected
effect of decreasing the level 0 loss. In essence, the probability amplitude tends to
avoid level 1 as it gets increasingly lossy. Alternatively, one can view this result as
indicated that the maximum loss from level 0 is obtained when the loss is matched
to the coherent transition rate.

7. Nuclear models

We have made progress on the other half of the problem which involves the calcula-
tion of the nuclear response in the presence of phonon-mediated excitation transfer.
The calculation of phonon exchange matrix elements requires the inclusion of the
nuclear center of mass coordinates as phonon operators. Results relevant to such
calculations for the four-body problem is discussed in another paper submitted to
this proceedings. [6]

We have in addition developed a new strategy for the calculation of the nuclear
response which may be worth discussing briefly. The lattice generalization of the
resonating group method that we have developed allows us to include phonon ex-
change explicitly in calculating nuclear interaction matrix elements. It seems that
the most relevant and perhaps cleanest calculation which is needed is a second-order
process in which an initial nuclear system receives energy via excitation transfer in
a first phonon mediated strong force interaction, then evolves as a daughter plus
neutral, and after a while makes a transition to a final state nuclear system. The
basic interaction matrix element can be represented as

Mfi(E) =

∑

int

〈
Ψf (q)Φf (ξ1, · · · , ξA)|VN |Φint[E − Ĥint]−1〈Φint|VN |Φi(ξ1, · · · , ξA)Ψi(q)〉

〉

(17)
In the initial state, we see an internal nuclear wavefunction Φi(ξ1, · · · , ξA), with ξj

as relative nucleon coordinates, embedded in a lattice (or condensed matter system)
described by Ψi(q). Transitions are mediated by the strong force, described here by
the nuclear potential VN . The intermediate internal nuclear wavefunctions for the
different possible intermediate configurations are Φint. The lattice wavefunction in
the intermediate state is implied through the specific bra and ket arrangements,
but since there is a neutral involved in the intermediate state, the phonon modes
of the lattice wavefunction are rotated through a Duschinsky transform (leading
to intermediate wavefunctions of the form Ψint(A · q). Finally, the neutral and
daughter come back together through the second potential interaction, producing
final state nuclear Φf (ξ1, · · · , ξA) and lattice wavefunctions Ψf (q). In this case,
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Figure 5. Feynman-type diagram for matrix element involving intermediate lattice plus neutral

states.

the phonon basis for the initial and final state lattice wavefunctions are locally the
same, since there is no net mass change. There could be rearrangements in either
the initial or final state systems, such as would occur if D2 or HT molecular systems
are involved. However, when the nuclei are close enough to interact, the lattice will
simply see four nucleons and two charges.

This basic calculation is involved both in phonon-mediated transitions of the
form D2 → n+3He → 4He on the D2 side, as well as AZ → nm+A−mZ → AZ transi-
tions on the receiver side. The matrix element can be represented by a Feynman-like
diagram that is illustrated in Figure 5. Implicit in the expression for the matrix
element and also in the diagram is the point of view that the lattice (or condensed
matter system) separates from a neutral (in association with an excitation transfer
event), evolves as a daughter lattice plus neutral in the intermediate state, and then
comes back together to form the final state lattice. Instead of a vacuum language
that focuses on nuclei and nucleons, in the formulation under discussion, the in-
teraction is with a nuclei which is part of a lattice, and it is helpful to think of it
as a neutral plus lattice separation. Such a view makes plain what the calculation
involves at the outset, and makes clear that it is in fact a fundamentally different
calculation than what is involved in related vacuum calculations.

8. Summary

We are moving toward viewing relevant models as involving the hindered coupling
between a Dicke system for the D2/4He side and a hybrid quantum system on the
receiver side composed of one or more Dicke systems strongly coupled to one or
more highly excited oscillators. In previous work, we have been interested in the
possibility that loss can break the symmetry of the coupled oscillator and Dicke
Hamiltonian in order to allow the conversion of nuclear energy to phonon energy.
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Here we have shown that the boundaries associated with the Dicke system can
accomplish the same basic function in a relevant strong coupling limit. Such a model
is capable of transferring energy on a timescale relevant to the oscillator frequency,
but we have not as yet clarified how much energy is transferred during that time
(other than the fact that it can be at least as large as one nuclear quantum).

We presented the results of an Ehrenfest analysis of coupled resonant Dicke
systems, augmented with loss to take into account energy coupling with the lattice
in an empirical way. The resulting evolution equations should be relevant to the
dynamics of fusion reactions under conditions where the D2 source is fixed (not
replenished). Progress on the nuclear calculations was discussed briefly as well.
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