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Abstract 
 

The possible existence of fractional quantum states in the hydrogen atom has been 
debated since the advent of quantum theory in 1924. Interest in the topic has intensified 
recently due to the claimed experimental findings of Randell Mills at Blacklight Power, 
Inc., Cranbury, New Jersey of 137 inverse principal quantum levels, which he terms the 
“hydrino” state of hydrogen. This paper will show that the general wave equation predicts 
exactly that number of reciprocal energy states. 
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INTRODUCTION  
 
Intensive laboratory research over much of the past decade at the Technical University of 
Eindhoven1  and at Blacklight Power, see Ref. [3] for a review of the several publications 
in refereed journals, on what has come to be known as the “hydrino” state of hydrogen 
has sent theorists scurrying to explain the experimental spectroscopic observations on the 
basis of known and trusted physical laws. Jan Naudts of the University of Antwerp, for 
example, offers the argument that the Klein-Gordon equation of relativistic quantum 
mechanics allows an inverse quantum state. 2   Andreas Rathke of the European Space 
Agency’s Advanced Concepts Team insists that the wave equation cannot produce square 
integrable fractional quantum states. 3   Randell Mills of Blacklight Power employs a 
theory based on the Bohr concept of a particle in orbit around a much heavier central  
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mass. 4   Based on the results of the following analysis, Naudts and Mills appear to be 
right. 
 
 
 
PRESENTATION 
 
Poincaré’s four-dimensional potential equation  
 

⁭ 0=Ψ                                                              (1) 
 
 
 

is normally written in rectangular coordinates zyx ,, , and w  as 
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We define the generating function Ψ as 
 
 

),,,(),,,( ictzyxwzyx ±Ψ=Ψ                                            (3) 
 
 

In this case we must have 
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Substitution of (5) in (2) yields 
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We see that the function Ψ is a general wave function of some kind. The three real space 
variables zyx ,,  describe a three-dimensional entity, and the variable t  describes its 
behavior in time. The absence of cross derivative terms in the equation requires the 
existence of an orthogonal geometry. 
 
 
In order to analyze the motion of translation of mass, we write the wave function 
 
 

XYZT=Ψ                                                            (7) 
 
 

where each factor in the product is a function of the given variable only. The use of (7) in 
(6) provides 
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Each term in (8) is a function of one variable only. Since the equation must be identically 
satisfied for all values of the variables, each term is a constant. Since we must assume the 
direction of any linear motion to be arbitrary, we assume it to be in the direction of the 
z axis. Then we have 
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where the ordinary derivative notation is used since only one variable appears. In the 
event that b is not zero, solutions are 
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bzeZ ±=                                                             (10) 
 
 

and  
 
 

ibzeZ ±=                                                           (11) 
 
 

except for the presence of multiplying constants. Equation (10) is that of a function which 
becomes infinite or zero with increasing z .  Since matter does neither, the solution is 
rejected. Equation (11) is that of a wave extending to infinity on the z axis. In that case, 
we reject (11) also. The only remaining possibility is given by 
 
 

02

2

=
dz

Zd                                                          (12) 

 
 

Then we find  
 
 

21 CzCZ +=                                                           (13) 
 
 

where 1C  and 2C  are arbitrary constants of integration. With the proper choice on these, 
we have  
 
 

Z=z                                                                (14) 
 
 

As a result of the given solution, we conclude that a particle can exist at any point on the 
z axis. We interpret (14) to represent the instantaneous location of a particle in motion in 
the direction of z. 
 
The analysis of orbital motion requires a transformation to a more suitable system of 
coordinates. In the case of an electron in the hydrogen atom, we have a cyclic motion of 
the nature of a stationary state. This requirement must be imposed on the right member of 
(8). Then we write 
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Since  c , the speed of light, is a constant, there is no need to include it in (15). Then for 
the description of cyclic states, we write 
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Solutions are provided by 
 
 

tieT α±=                                                            (17) 
 
 

except for the multiplying constant. The simplest condition is then 
 
 

fπωα 2==                                                             (18) 
 
 

in terms of a cyclic frequency, where ω  represents the angular frequency of the motion. 
The general wave function may now be written  
 
 

ti
oe ω±Ψ=Ψ                                                           (19) 

 
 

The use of (19) in (6) yields 
 
 

02

2

2

2

2

2

2

2

=Ψ+
∂
Ψ∂

+
∂
Ψ∂

+
∂
Ψ∂

o
ooo

czyx
ω                                        (20) 

 
 

to represent the general wave equation for stationary states.  In terms of spherical 
coordinates φθ ,,r , equation (20) is written 
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Calculation can be eased by use of  
 
 

θμ cos=                                                             (22) 
 
 

whose use in (21) produces 
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If in equation (23) the transformation 
 

 
ΘΦ=Ψ Ro                                                             (24) 

 
is applied with the understanding that each factor in the product is a function of  the 
corresponding variable only, a separation can be made in the form 
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The term containing the equatorial angle φ  can be separated and shown to be a constant 
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resulting in the differential equation 
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Solutions of equation (27) are found by 
 
 

φime±=Φ                                                          (28) 
 
 
 

except for a multiplying constant, where m  is the orbital magnetic quantum number with 
values 0, 1± , 2± , 3± , ± …. 
 
 
The quantity within braces in equation (25) can now be written as 
 
 

22
2

2

1
1)1(1 km

d
d

d
d

−=
−

−⎥
⎦

⎤
⎢
⎣

⎡ Θ
−

Θ μμ
μ

μ
                                  (29) 

 
which, when both sides are multiplied by Θ , yields 
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Multiplying each term by 21 μ− , 
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A solution in the form of the Maclaurin series  
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produces in (31) 
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which, when substituted in (33) produces 
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We expand (35) 
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We group like terms and divide each term by 2+lμ  to obtain 
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Since we want the series to terminate, we eliminate terms with negative exponents on μ      
since they go to infinity for zero values of θ   in θμ cos=  . A good approximation of the 
function, therefore, is provided by use of the first term on the left of the equality, 
providing 
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where la  is not zero. Thus 
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Equation (25) can now be written 
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which further yields 
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Multiplying through by R  yields 
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and, after extraction of 2r  from the bracket, leaves 
 
 

0)1()(2
22

2

2

2

=⎥
⎦

⎤
⎢
⎣

⎡
+−++

r
Rll

c
r

dr
dR

rdr
Rd ω                                  (44) 

 
 

The electron spin is found from the series representation 
 
 

s
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which produces an electron spin of  [- ½] .  To obtain the other spin, we employ the series 
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which produces spin of  [+ ½] 
 
 
To obtain inverse energy levels, we suppress the spin in equation (44) by use of  

½−= rR ρ , which results in 
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We now replace 2)( ωr  with 2v  to obtain 
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The inverse principal quantum numbers are obtained from use of  n

n

ra
1

1=ρ  in equation 

(48) yielding 
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where 
n
1  is rational. In the region of the first Bohr orbit 5  where 1=n  and cv 0073.0= , 

equation (49) produces  n = .1½ =+l  This marks the beginning of the inverse quantum 

states. When ,cv =  
137

1
=n . This marks the end of the 137 inverse quantum states. The 

analysis seems to have support in the metallic hydrides where magnesium hydride, for 
example, requires an incredible 800K to release the hydrogen. Mills’reports in over thirty 
refereed papers of experimentally found tight hydrogen bonds is also noteworthy and 
cannot be dismissed. 
 
 
We examine a transverse component of the electron matter wave on the zy,  plane 
 
 

Ay =  sin ω t                                                         (50) 
 
 

where the amplitude A is also the radius of a cylindrical standing wave. Taking the 
derivative yields 
 
 

ωA
dt
dyv ==  cos ω t                                                    (51) 

 
 

which, for cos ω t  = 1, provides 
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fAAv πω 2==                                                         (52) 
 
 

where we see that 
 
 

Aπλ 2=                                                              (53) 
 
 

In other words, the circumference of the front circular face of the electron cylinder is 
equal to the electron’s wavelength. The radius of the cylinder is 
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which provides a volume 6  of  
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We observe that as the wavelength reduces, the standing wave becomes more and more 
particle-like, which makes sense considering what happens in the K-capture process. It is 
interesting to observe that an induced K-capture process is thought responsible for 
transforming protons to neutrons. 7  Thus it appears the hydrogen atom is a site where the 
electron becomes transformed from wave to particle. 
 
 
CONCLUSION  
 
The four-dimensional potential equation indicates that fractional quantum states exist. 
The solution is square integrable, satisfying a fundamental tenet of quantum physics. 
Mills’ claim of 137 different inverse energy levels seems confirmed, as is Naudts’ 
relativistic analysis showing that at least one reciprocal state can exist.  
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