Glow Discharge Calorimetry

T. B. Benson and T. O. Passell

D2Fusion, Foster City, CA ICCF12 Yokohama, Japan Nov. 28- Dec. 2, 2005

APPROACH

- Small Glow Discharge Tubes Operated at <1 watt Input Power on D2 and H2, The Latter for Baseline XSH
- Many Pairs of Metal Surfaces on the Electrodes
- Up to Ten Tubes Operated in Parallel at 2 to 20 Torr Using Bleed Flow from 1-Liter Ballast Tanks for Seamless Gas Changes From a Common Gas Manifold
- Thermistor Temp Monitoring Via 40-Channel Multimeter
- Resistance Heating for Calibration
- Glass or Plastic Port for Viewing Discharge and Optical Spectroscopy
- Calorimetry on Power Supplies Determines Their Waste Heat and Hence Efficiency

Tube 31 cathode (102) and anode (101) minus 107 ambient During Polarity reversals and Switch from Deuterium to Hydrogen at 2700 minutes 11-16-05

Time in Minutes

Tube 31

2nd Run of Pd Wires with Titanium Wire Anode

Confirmation Run: 200 8-mil Pd wires		
Power in	Watts Calcuated from Calorimeter	
DC Watts	Power Supply Tube	Total % of Power In
0.65	0.2467 37.95% 0.54318 83.57%	0.79 121.51%

Problems

- Proper Calibration with Resistive Heating Heat Must Enter System Similar to Heat From the Discharge
- Difficult to Capture Heat Generated as Emitted Photons In Latest Linear Geometry
- Bleed Flow Must Exceed Background Gases from Air In-Leakage and Outgassing of Surfaces
- Discharge and Ambient Temperature Drift Must be Slower than the Time Constants for Achieving Thermal Equilibrium –Typically 40 to 150 minutes
- Large Ratios (~2) of Excess Heat over Input Still Detectable in Spite of Problems

CONCLUSIONS

- This System is able to Screen Many Combinations of Metals and Surface Structures on the Electrodes
- The Tubes are Inexpensive and Appear to Maintain Discharges for Several Days
- Obtaining High Surface Area Electrodes is One of the Next Steps
- Initial Results Encouraging for Pd Wire Cathodes

Porous alumina + pd nanotubes/wires

